电炮技术

登录以发表

上级专业


主管专家


文章

2128

评论

32396

今日更新

0

专业介绍

电磁枪与电磁炮,电磁加速方法研究

专业分享

文章

2128

评论

32396

今日更新

0

专业介绍

电磁枪与电磁炮,电磁加速方法研究

专业分享
- 以上是置顶 -

引言 初入坑电炮时曾受 @Ma3.02的守望 YB-5的影响,计划做一台能够实用化、便携、性能优异的电炮,但因为对整个设计过程不甚了解,迟迟没有动手。后来在和 @三水合番 交流后得到很大鼓励,加之一段时间的学习中已经基本有了一些思路,遂下定决心,开始了EP60-EP65(EP为我的命名习惯,不代表一共有65个版本)工程。 预计的设计指标 由于走的是“实用、便携、性能优异可靠”的路线,也困于没有时间和设备加工,所以整个加速系统的大部分机械部件都将使用可以便捷购买的标准件,只是在此基础上做一些简单加工。 整体电子学结构为光电检测,为了安全和系统稳定性驱动-功率(强弱电)全部光-电/电-磁隔离,这样哪怕只有一级能够正常工作,弹丸也可以被发射。控制部分有简单的人机交互程序,能够反馈基本情况以及根据操纵者指令更改运行情况。开关采用IGBT并管。 机械结构最终测试完成后使用6066铝合金及环氧板做框架和内部系统绝缘隔离 为了能把电磁发射的优点最大化,我将其设计为可以单发/连射的两种模式,并且会在之后尝试使用各种手段将有效射程及精准度提高。 一些基本参数(预计): 电源:22.5v 6s 6Ah 30c Li-ion电池 <p

由于之前自制的三级光电控制的可关断小磁阻炮取得了一些出乎意料的成果(无能量回收情况下,在仅三级,电容组330v电压下7g弹丸初速达到了近50m/s,假设电容组全部放电到0v效率依然达到了9.8%)遂发出此帖向大家介绍一些我走过的弯路和得到的经验。   过去的几个月中,我一直在尝试制作并优化IGBT可关断式磁阻炮的控制电路,取得了不小的成果,我也会在文中附上前几周制作三级小磁阻的过程供大家参考,并分享一些性能优秀的元件。 1.关于可关断式磁阻炮相对于传统无关断的优势(高手可跳过):避免了弹丸飞出线圈后电容组的储能仍被线圈和开关以产热消耗,减少了能量浪费并一定程度上减小了反拉,还可以使电容组有一定余电,这有利于连发。 2.关于高压电容充电器设计的一些问题:在这门炮上我使用了它激推挽式升压,电路是根据 @金坷居士 的逆变器前级稍微修改而成(请各位不要模仿,我会在后面说明原因)。在询问金坷居士本人后我得知这个电路没有电流环,不适合为电容充电,但我依然决定用它来为这门炮的330v 共1620uF的电容组充电,这是第一个设计上的失误。而另一个失误则是出于体积考虑,我没有在高压输出端做任何限流措施,这就相当于两个内阻极小的电压源,一个接近

相变散热是利用物质在相转变过程中的吸热来减少目标温升的一种散热方式。例如,邮寄生鲜时在保温箱中放入冰块,以使温度保持在零度左右(当然,本贴不是介绍在电磁枪里塞冰块来降温的)。常见的“相转变过程”有固-液(熔化),液-气(气化),固-固(晶形变化)。 常见的适合用于电磁枪散热的相变材料中,固-液相变的例如石蜡、三水合醋酸钠 、低熔点合金;液-气相变的例如水;固-固相变的例如新戊二醇,改性的聚乙二醇等。由于液-气相变不可重复使用,故之后不讨论这种情况。 电磁枪由于其效率较低(普遍低于10%),在连续发射时,系统产热约等于耗电功率。目前有连发能力的电磁枪,其耗电功率普遍在百W量级,大约相当于一个迷你版的小太阳。 (附件:280433)上图中的功率在300W左右,图片来自淘宝 其中的大部分功率将会消耗在线圈上。当然,由于功率总量比较大,因此尽管其它部分的发热功率占比较小,也可能会引起显著的温升。考虑到电磁枪结构上较为狭长且紧凑,如果希望各部分的温升在一个比较令人放心的程度,比如最高温度在100℃以下,使用常见的散热方式可能比较难以达到足够的散热效果(例如风扇),或者结构较为复杂(例如水冷)。 相变散热可以使用简单的结构、很小的体积和较低的重量达到足够高的散热功率。结构上,相变散热只需要保证相变材料能够直接或间接与热源接触,不需要考虑风道或者管路的设计。体积上,由于相变材料可以填充到各个

实验发现,普通弹丸在不带自旋的情况下发射,会在空中翻滚。 (附件:279811)翻滚导致弹丸横着着靶 翻滚会增加空气阻力,降低精度和穿透力。为了避免这些不利影响,通常的做法有:使用球形弹丸,使用气动稳定的弹丸(比如某些内螺纹圆柱销),以及使用自旋稳定的弹丸。其中,自旋稳定是,通过高速旋转产生陀螺效应,稳定弹丸,使弹丸始终指向其前进方向。 相比于气动稳定,自旋稳定的好处主要在于阻力小,稳定性好以及弹丸成本低。比如普通圆柱销或者方键,其价格按重量算基本等于钢材的价格。而气动稳定的内螺纹圆柱销,价格则是钢材价格的数倍。使用尾翼的气动稳定同样有较高的加工和装配成本。 自旋稳定对于转速的要求,比通常所认为的要高得多 比如曾有人尝试,使用标称5000rpm的电机对4mm*35mm的圆柱形弹丸进行预旋。不过并没有成功稳定弹丸: https://kechuang.org/t/80288 也有人尝试在弹丸上斜向开槽,使弹丸在气流的作用下产生旋转。不过同样没有成功稳定弹丸: https://tieba.baidu.com/p/5095683672 (另外,貌似独头霰弹也并不是靠气流使弹丸旋转来稳定弹丸,而是使用了气动稳定) 关于究竟多大的转速可以使弹丸稳定,有一些经验公式可以参考。比如Miller t

上个月弄了些放电管测了一下,趁现在放假把测到的东西发出来 这里提到的放电管指的是“气体放电管”。由于是用击穿气体的方式导电的,所以会有比较大的导通压降,然而手册上通常只会给出1A电流下的数据。显然,这个测试条件和电磁炮开关的应用条件差别太大。之前也曾经到处搜过,不过没查到相关的数据,所以就自己实测了一下。 这次主要测试了标称直流耐压350V的三极放电管(型号:T83-A350X) 这个东西长这样 (附件:279425) 附上它的手册:(附件:279427)这次测试使用了两种不同的触发方式,首先是主功率回路接在三极放电管的两侧,触发接在中间的电极 (附件:279430) 之后也尝试了把主功率回路和触发都接在放电管的两端 (附件:279429) 以上两种方式均可可靠的触发,且测得的电流电压曲线没有明显区别。 其中,主功率回路上的电感使用0.8mm漆包线双线并绕,大概一共20到30匝,有三层。线圈内径13mm,长约17mm,外径小于21mm。线圈电感10uH,内阻30.2mΩ。测试时使用空线圈,没有加弹丸。 1mΩ的电阻是一根长3cm,直径0.8mm的裸铜线,用来检测电流。 变压器是高压条用的变压器,用电桥测电感的方法得到它的匝比约为119:1 (附件:279431) 变压器初级的开关是普通的微动开关,变压器次级的电容是两个1nF的1812贴片电容并联。 主功率回路上的电容用实测容

本人初二,想制作一台4级电磁炮。 基本参数:电压310,每级电容是330v1000uf1个或2个并联,可控硅BCB60-1600(1600V60A峰值比70tp系列大一点,具体数忘了,不用70tp的原因是bcb便宜点)。吸收二极管D07-15(1500V7A)子弹是6*35mmA3(Q235)定位销,理论重量7.77g。炮管是外8内6亚克力。线圈匝数待进一步模拟确定。线圈长度25mm(由于骨架限制) 1.填模拟器时,饱和磁导填的1.6,是否正确? 2.我想使用ZVS做升压,12V升310vDC,但是应该如何制作变压器?我做了个实验,初级3+3情况下,次级绕1匝整流后输出5.23VDC,次级绕2匝整流后输出14.5VDC,难道ZVS的电压不与匝数成正比?还是我的测量有问题?(实验时整流管是UF4007,电容是50V10UF独石电容,mos管IRFP260) 3.关于光电位置的确定:先在模拟器图象上找出速度不再变化时的时间,再用此时间乘以加速时的平均速度算出位移。(根据图像求平均速度大家有没有精确度高一些的办法?我是隔500us取样一次,感觉不准)位移距离就是光电位置。光电位置加17.5(子弹长度一半,即中心点)就是第二级的“初始位置”。后面以此类推。不知这样计算是否准确? 4.我进行计算时,最后一级匝数几十T速度却比上百T高。真的是这样吗?还是模拟器不准? 附上我的模拟数据和模拟器。

这个是一系列贴子中的第一个,不全写完再一起发出来是因为,开始写之后发现,这种东西比我预期的难写得多……所以打算分几批发出来。(主要是为了避免费了好大劲全写出来结果没人看的尴尬) 引用请注明出处,转载或其他用途请先征得本人同意。 本文的主要目的是,介绍传统单人便携动能武器(或简称“武器”)的性能,以及通过介绍其性能,为电磁枪的发展提供一个性能上的参考。本系列主要通过初速,动能,射速,精度,杀伤力,隐蔽性,便携性对武器的发射性能进行描述。除此之外,还会提到诸如效率,成本,可靠性,耐候性等参数,以描述武器其他方面的性能。受篇幅限制,特别常见的内容可能会略去。 火药枪 火药枪是目前应用最广泛,发展最成熟的武器。实用的火药枪大约出现于15世纪(滑膛火绳枪)。之后先后出现了带膛线的枪管(解决精度问题);燧发枪(更容易操作,统治了枪械界长达两个世纪)。下面这篇文献,对这一时期的十余种枪的发射性能进行了测试。(附件:279211)测试得到的数据如下 表1. 早期火药枪的弹道性能 (附件:279224) 表2. 早期火药枪的穿深,射程,散布和命中率 (附件:279225) 从以上数据可以看出,早期火绳枪和燧发枪的初速普遍超过音速。有趣的是,由于口径大,弹丸重,这些早期步枪的枪口动

又加上了两级,现在是七级。本楼后面已加上测试结果和分析,中压600v级别测试到此顺利结束,今后不再新增更多级。 准备了两个月时间,期间烧掉了一堆IGBT和驱动芯片还有MCU,终于能够稳定下来了。 阵亡“将士”一览图: (附件:279058) 烧掉的IGBT、mcu、IGBT驱动芯片、快恢复二极管和一些高压电阻。 本来想做5级测试,手上管子不够了,正在快递中,等以后到了再补上5级的测试结果。 第一次做电磁炮,所以基本就是拿模拟器默认参数来用: 0.7mm线径,内径8.6mm,长度30mm320匝的线圈5个(最后一个未用),实际4级,间隔5mm亚克力板; 管材:外8.5内8.1,壁厚0.2mm的304不锈钢管; 弹丸:8*35mmA3定位销,13.8g; MCU开环控制,IGBT半桥模式,工作电压620v-660v,根据模拟器测算的峰值电流是546.5A-581.8A。 电容:每级1450uf/700v,薄膜电容,内阻0.54mΩ,工作电压620v-660v,实测容量1440-1458uf。 IGBT: 标称600v、120a,峰值480A。实际使用因ZVS限制,最高上到660v,未烧管。 测速方式:示波器读取35mm长的弹丸通过光电的时间,根据V=L/T来计算。 线圈和弹丸情况(实际用了4级): (附件:279061) 4个30mm线圈120mm,间隔5mm,总长135mm。 控制

上级专业


主管专家



关注者


今日来访

nkc production server  https://github.com/kccd/nkc.git

科创研究院 (c)2001-2018

蜀ICP备11004945号-2 川公网安备51010802000058号