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For supersonic flow past a cone at zero angle of attack (see Fig.1), we can apply the governing
equations and the assumption of irrotationality to develop the non-dimensional Taylor-Maccoll
ODE 1
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where vr is the radial velocity component and vθ = v′
r = dvr

dθ is the polar velocity component.
Note that this equation applies from the shock θs to the surface of the cone θc. Solving for vr(θ),
the remaining flow properties can be determined using the isentropic relations. The velocity
components are related to the local Mach number through
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We can employ a numerical solver, such as the ode15s function available in Matlab, to
solve the Taylor-Maccoll ODE for vr(θ). In this case, one can determine vr and vθ = v′

r im-
mediately behind the shock as a function of M∞ using the oblique shock relations. Note that
β = θs and θ = δ in the β-θ-M oblique shock relation. The values immediately behind the shock
form one boundary condition for our ODE, while flow tangency at the cone surface provides
another boundary condition. We can numerically solve for the solution to vr(θ) by marching
the solution from the initial conditions at θs until we reach θc where vθ = v′

r = 0. Using this
1See Anderson, Modern  Compressible  Flow, 2003.
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Figure 1: Geometry of the flow past a supersonic cone at zero angle of attack.
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Figure 2: Flow solution for cone normalized relative to flow properties immediately behind the
shock.

technique one can indirectly determine the half cone angle θc that produces a given shock angle
θs.

Matlab’s family of ODE solvers (eg.ode15s) can determine the solution y(t) that satisfies
the ODE y′ = f(t, y) by marching forward in t from the initial value y(t0). The ODE f(t, y)
can be a scalar ordinary differential equation or a system of ordinary differential equations. In
the case of the Taylor-Maccoll equation it is convenient to represent the ODE as a system of
ODE with solution vector

y =
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]
=
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such that the ODE can be represented as the following system of differential equations

y′ = f(θ, y) =
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Note that the new ODE, y′, can be expressed entirely in terms of a given y and θ where the
second vector component is determined by rearranging Eq. 1 for v′′

r .
Using the initial conditions behind the shock y(θs), we can use ode15s2 to march the initial

solution from θs to 0, stopping the solution early if we detect y2 = v′
r = vθ = 0. Using the

isentropic relations, one can determine the solution to the flow properties behind the shock,
as illustrated for the case where θc = 45◦ and M∞ = 2.0 in Fig. 2. The solution for shock
angle and cone surface Mach number as a function of half cone angle appears in Fig. 3 and 4,
respectively, for a range of M∞. The source code used to produce these figures follows.

2There are several ODE solvers with differing accuracy and speed available. In this case, ode15s quickly solves a
relatively stiff problem.
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Figure 3: Shock angle θs versus half cone angle θc.
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Figure 4: Cone surface Mach number Mc versus half cone angle θc.
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1 function [thetac,Mc,sol]=solvecone(thetas,Minf,gamma)
2 % Solves the right circular cone at zero angle of attack in supersonic flow
3 % thetas - shock angle [degrees]
4 % Minf - upstream Mach number
5 % gamma - ratio of specific heats
6
7 % Convert to radians
8 thetasr=thetas*pi/180.0;
9

10 if (thetasr<=asin(1/Minf))
11 thetac=0.0; Mc=Minf;
12 return;
13 end
14
15 % Calculate initial flow deflection (delta) just after shock...
16 delta=thetabetam(thetasr,Minf,gamma);
17 Mn1=Minf*sin(thetasr);
18 Mn2=sqrt((Mn1^2+(2/(gamma-1)))/(2*gamma/(gamma-1)*Mn1^2-1));
19 M2=Mn2/(sin(thetasr-delta));
20
21 % All values are non-dimensionalized!
22 % Calculate the non-dimensional velocity just after the oblique shock
23 V0=(1+2/((gamma-1)*M2^2))^(-0.5);
24 % Calculate velocity components in spherical coordinates
25 Vr0=V0*cos(thetasr-delta);
26 Vtheta0=-V0*sin(thetasr-delta);
27 % Calculate initial values for derivatives
28 dVr0=Vtheta0;
29 % Assemble initial value for ODE solver
30 y0=[Vr0;dVr0];
31
32 % Set up ODE solver
33 % Quit integration when vtheta=0
34 % See: coneevent.m
35 % Set relative error tolerance small enough to handle low M
36 options=odeset(’Events’,@coneevent,’RelTol’,1e-5);
37 % Solve by marching solution away from shock until either 0 degrees or flow
38 % flow tangency reached as indicated by y(2)==0.
39 % See cone.m
40 [sol]=ode15s(@cone,[thetasr 1e-10],y0,options,gamma);
41 % Check if we have a solution, as ode15s may not converge for some values.
42 [n,m]=size(sol.ye);
43 thetac=0.0;
44 Mc=Minf;
45 % If ODE solver worked, calculate the angle and Mach number at the cone.
46 if (n>0 & m>0 & abs(sol.ye(2))<1e-10)
47 thetac=sol.xe*180.0/pi;
48 Vc2=sol.ye(1)^2+sol.ye(2)^2;
49 Mc=((1.0/Vc2-1)*(gamma-1)/2)^-0.5;
50 end

Figure 5: Matlab source code for solvecone.m
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1 function [dy]=cone2(theta,y,gamma)
2 % y is a vector containing vr, vr’
3 % Governing equations are continuity, irrotationality, & Euler’s equation.
4 dy=zeros(2,1);
5
6 dy(1)=y(2);
7 dy(2)=(y(2)^2*y(1)-(gamma-1)/2*(1-y(1)^2-y(2)^2)*(2*y(1)+y(2)*cot(theta)))...
8 /((gamma-1)/2*(1-y(1)^2-y(2)^2)-y(2)^2);

Figure 6: Matlab source code for cone.m

1 function [value,isterminal,direction]=coneevent(theta,y,gamma)
2 % Check cone solution for point where vtheta=0
3 % theta - current angle
4 % y - current solution vector
5 % gamma - ratio of specific heats
6
7 value=zeros(2,1);
8 isterminal=zeros(2,1);
9 direction=zeros(2,1);

10
11 %Quit if Vr goes negative (which shouldn’t happen!)
12 value(1)=1.0;
13 if (y(1)<0.0)
14 value(1)=0.0;
15 end
16 isterminal(1)=1;
17 direction(1)=0;
18
19 %Quit if Vtheta goes positive (which occurs at the wall)
20 value(2)=1.0;
21 if (y(2)>0.0)
22 value(2)=0.0;
23 end
24 isterminal(2)=1;
25 direction(2)=0;

Figure 7: Matlab source code for coneevent.m

1 function [theta]=thetabetam(beta,M,gamma)
2 % Return theta for beta-theta-M relationship for oblique shocks
3 % beta - shock angle in radians
4 % M - upstream Mach number
5 % gamma - ratio of specific heat
6
7 %Cut off at Mach wave angle
8 if (beta<=asin(1/M)) theta=0; return; end
9

10 theta=atan(2*cot(beta)*((M*sin(beta))^2-1)/(M^2*(gamma+cos(2*beta))+2));

Figure 8: Matlab source code for thetabetam.m
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