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An adaptive wavelet-collocation method for shock computations

J.D. Regele and O.V. Vasilyev*

Department of Mechanical Engineering, 427 UCB, University of Colorado, Boulder, CO 80309-0427, USA

(Received 5 August 2008; final version received 7 June 2009)

A simple and robust method for solving hyperbolic conservation equations based on the adaptive wavelet-
collocation method, which uses a dynamically adaptive grid, are presented. The method utilises natural ability of
wavelet analysis to sense localised structures and is based on analysis of wavelet coefficients on the finest level of
resolution to create a discontinuity locator function F. Using this function, an artificial viscous term is explicitly
added in the needed regions using a localised numerical viscosity that ensures the positivity and TVD non-linear
stability conditions. Once the wavelet coefficients on the finest level of resolution are below the error threshold
parameter E, the artificial viscosity is shut off and any remaining physical waves are free to propagate undamped.
Multiple examples in one and two dimensions are presented to demonstrate the method’s robustness, simplicity and
ease of extending to more complex problems.

Keywords: Euler equations; hyperbolic conservation laws; wavelets; adaptive grid; artificial viscosity; Riemann
problem; shock capturing

1. Introduction

Although computer technology continues to grow at
a rapid rate, computer processor speeds continue to
be a limiting factor in numerical modelling of science
and engineering applications. Various approaches
have been developed to remedy this problem,
however they do not come without a cost. If a
uniform grid is used, it is not unusual to find that
expensive and complicated flux calculations are
required to increase the efficiency. Traditionally
with non-uniform or unstructured grids, a mesh
generator is required or ad-hoc rules and assumptions
are needed for adaptive mesh refinement (Babuska
et al. 1984, Flaherty 1989).

The numerical solution of hyperbolic conservation
laws presents an added level of difficulty because of
their inherent nature to form jump discontinuities.
The number of techniques and algorithms available
to address these problems are abundant in the
literature. However, there exists a major commonality
among most of the more traditional schemes and that
is the use of artificial viscosity. The simplest means of
resolving a shock is by artificially increasing the
physical viscosity in the discontinuity regions to
avoid unphysical oscillations. This approach requires
a very fine grid in order to obtain sharp discontinuity
and is impractical unless a non-uniform grid is used
(e.g. Woodward and Colella 1984, Nithiarasu and
et al. 1998). Examples of the modern methods used

today include Harten, Lax and van Leer (HLLC)
(Harten et al. 1983), essentially non-oscillatory
(ENO) (Harten et al. 1997), weighted essentially
non-oscillatory (WENO) (Liu et al. 1994) schemes,
monotone upstream-centred schemes for conservation
laws (MUSCL) (van Leer 1979, Colella 1985),
advection upstream splitting method (AUSM) (Liou
and Steffen 1993, Liou 1996). For more details of
these and other schemes, we refer to Toro (1997),
Laney (1998). It is well known from Godunov’s
theorem (Toro 1997) that it is impossible to have a
monotonic linear method that is higher than first
order accurate. All approaches mentioned earlier use
information obtained from the solution to create
non-linear schemes so that higher accuracy is
achieved. Most high order schemes such as MUSCL
use subgrid scale data reconstruction, which substan-
tially increases the numerical cost.

Harten (1994) introduced the use of wavelets as a
new compression algorithm to reduce the number of
points needed to solve the compressible Euler
equations. A standard central differencing flux was
used for regions of low resolution. In the shock
regions, the method was switched to a simplified
ENO scheme. Harten demonstrated that the magni-
tude of a wavelet coefficient is of the same order as
the jump discontinuity. Furthermore, the local
Lipschitz exponent can be obtained from the wavelet
coefficients to ascertain further information about the
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regularity of the solution (Sjogreen and Yee 2000).
Therefore, wavelet coefficients act as a good indicator
of a shock’s location. In the last few years, there
has been a significant effort to incorporate the use of
wavelet compression for the solution of hyperbolic
partial differential equations using either finite volume
formulation (Cohen et al. 2001, Chiavassa et al.
2003) or WENO scheme (Burger and Kodakevicius
2007) combined with a multiresolution technique based
on interpolating wavelets (Donoho 1992, Harten
1994). It is clear from these and other works on the
use of adaptive meshes for shock computations (e.g.
Warren et al. 1991, 1993, Yamaleev and Carpenter 2002)
that fully adaptive multiresolution schemes offer a clear
computational advantage over conventional schemes.

Over the last several years, our research group has
developed an adaptive wavelet-collocation method
(AWCM) (Vasilyev and Bowman 2000, Vasilyev
2003, Vasilyev and Kevlahan 2005) that is based on
second generation wavelets (Sweldens 1996, 1998). The
method has been successfully applied to the solution of
both parabolic (Vasilyev and Kevlahan 2002, Alam
et al. 2006, Kevlahan et al. 2007) and elliptic partial
differential equations (Vasilyev and Kevlahan 2005).
This article is the extension of the AWCM to
hyperbolic differential equations. The overall philoso-
phy of this work deviates from the current trend of
computationally expensive high order schemes and
takes advantage of the dramatic savings achieved with
a dynamically adaptive multi-resolution grid to resolve
discontinuities so that the wavelet coefficients in
discontinuity regions remain in a specified range.
This is achieved by taking the shock capturing
approach, which explicitly adds artificial viscosity to
smoothen shocks and applies it in a manner more
reminiscent of a flux-limiting method (van Leer 1979).
The main advantage of this approach is that the
AWCM is used to reduce memory overhead and
computational costs significantly to obtain a simple
method that avoids any elaborate flux manipulations.
The method may not be capable of resolving shocks
and contacts in as few grid cells as some more
elaborate schemes (e.g., Colella 1985, Liu et al. 1994,
Liou 1996), but since the AWCM significantly reduces
the number of grid points, the approximation of
discontinuities on a wider stencil is justified. It should
be noted that the proposed shock capturing scheme
can be used in the context of Adaptive Mesh
Refinement methods (Berger and Oliger 1984, Berger
and Colella 1989, Bell et al. 1994, Berger and Leveque
1998) with wavelet-based shock locator function used
for all highest resolution patches. However, the use of
patches wider than the number of points required for
stable shock capturing would reduce the computa-
tional efficiency of the proposed methodology. The

purpose of this work is to develop a general and robust
algorithm to solve hyperbolic equations in conjunction
with the AWCM while still maintaining its error
thresholding properties.

This article is organised in the following manner.
First in Section 2 a brief overview of the AWCM is
given and its error thresholding properties are dis-
cussed. The hyperbolic solver, including the wavelet-
based shock locator function, is described in Section 3.
The results of a series of one- and two-dimensional
tests are discussed in Section 4. Finally, a summary of
the overall conclusions is given in Section 5.

2. Adaptive wavelet collocation method

The numerical technique introduced in this study
directly uses the AWCM (Vasilyev and Bowman
2000, Vasilyev 2003 ), which utilises second generation
wavelets to efficiently solve partial differential equa-
tions. Until now, compressible flow simulations using
this method were limited to solving full Navier–Stokes
equations. As the Reynolds number increases, so does
the number of grid points required to resolve a shock.
In this work, a hyperbolic solver is developed that is
capable of solving Euler equations in a manner that
still takes advantage of the method’s strengths, yet its
implementation is simple and robust.

It is well known (Daubechies 1992, Chui 1997,
Mallat 1998) that any function u(x) in an n-dimen-
sional space can be decomposed as

uðxÞ ¼
X
k2K0

c0kf
0
kðxÞ

þ
Xþ1
j¼0

X2n�1
m¼1

X
l2Lm;j

dm;jl cm;j
l ðxÞ ð1Þ

where c0k and f0
kðxÞ are the scaling coefficients and

functions on the lowest level of resolution and
dm;jl ; c

m;j
l ðxÞ are the wavelet coefficients and basis

functions, bold roman subscripts denote index in
n-dimensional space, i.e. k ¼ (k1, . . . ,kn), K0and Lm;j

are n-dimensional index sets associated with scaling
functions at zero level of resolution and wavelets of
family m and level j. Because of the fact that most of
the shock type problems involve very localised jump
discontinuities with smooth solutions elsewhere, wave-
let-type numerical methods are a great candidate for
solving these problems. Most wavelet coefficients dm;jl

will be small except near jump discontinuities. Equa-
tion (1) can be decomposed into two terms whose
wavelet coefficients are above and below a threshold
parameter E,

uðxÞ ¼ u�ðxÞ þ u<ðxÞ; ð2Þ
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where

u�ðxÞ ¼
X
k2K0

c0kf
0
kðxÞ

þ
Xþ1
j¼0

X2n�1
m¼1

X
l2Lm;j

jdm;j
l
j�Ejjujj

dm;jl cm;j
l ðxÞ; ð3Þ

u<ðxÞ ¼
Xþ1
j¼0

X2n�1
m¼1

X
l 2 Lm;j

jdm;j
l
j<Ejjujj

dm;jl cm;j
l ðxÞ: ð4Þ

Donoho (1992) was able to show that for a regular
function the error is bounded as

jjuðxÞ � u�ðxÞjj � C1Ejjujj; ð5Þ

which means that the number of grid points needed to
solve a numerical problem can be significantly reduced
while still retaining a prescribed level of accuracy
determined by the threshold parameter E.

Estimation (5) is based upon the assumption that
the solution is a regular function. Hyperbolic con-
servation laws naturally produce discontinuous solu-
tions, which require infinitely fine mesh to properly
represent them numerically. Limiting the maximum
level of resolution results in undesirable oscillatory
Gibbs phenomena in the vicinity of a discontinuity
(e.g. Vasilyev et al. 1995). One way to prevent these
oscillation is to add numerical diffusion in the
immediate proximity to the shock. It should be noted
that by setting a maximum level of resolution and
adding artificial viscosity in the discontinuity region
effectively create an upper bound on the wavelet
coefficients dm;jl . Because the wavelet coefficients deter-
mine how rapidly a function can change, limiting the
coefficients improve an upper bound on a shock
steepness. When this artificial viscosity is applied in a
systematic manner, approximately the same number of
points are needed in order to resolve a shock. Each
time the level of resolution is increased, the width of
the shock decreases by a factor of 2. If jmax is set
reasonably high, the scales resolved by the algorithm
will approach the physical scales but will still be under-
resolved for the sake of numerical stability.

3. Hyperbolic solver

The objective of this article is to develop a dynamically
adaptive hyperbolic solver in conjunction with the
AWCM that is robust and simple to implement.

Because of the computational advantage that wavelets
provide, artificial viscosity is explicitly added near
shocks and discontinuities to smoothen them over
several points. Many foundational techniques use flux
or wave speed splitting to ensure that the upwind
techniques are applied in the correct characteristic
directions. These upwind techniques introduce an
implicit artificial viscosity term that provides the non-
linear numerical stability condition needed when solving
hyperbolic conservation laws. The current research
effort seeks to avoid using these techniques as they
become difficult to use when dealing with a dynamically
adaptive grid. The proposed method, which is similar to
Harten’s switching criteria (Harten 1994), determines a
shock’s location by its wavelet coefficient on the finest
level of resolution. Using the coefficients, a shock
locator type function F is created to explicitly add
artificial viscosity in the vicinity of a discontinuity or
shock. The combination of these different ideas with the
dynamically adaptive grid creates a computational
scheme that is highly versatile, yet accurate to a
predetermined level. The time integrations are per-
formed using an implicit Krylov technique and the time
step Dt is still calculated using the CFL condition based
upon the smallest grid spacing Dx on the finest scale.
However, the CFL restriction does not come from the
classical stability analysis, as the integration scheme
is implicit and is capable of using larger time-steps.
The CFL limitation comes from adaptive nature of the
algorithm, namely time step is restricted by the
requirement that small-scale structures do not move
outside of high resolution regions within a time step,
thus insuring the proper resolution of flow structures
during time integration. Further details about time
integration with the dynamically adaptive grid can be
found in previous work (Vasilyev and Bowman 2000,
Vasilyev 2003, Kevlahan and Vasilyev 2005).

3.1. Shock locator function

Harten (1994) demonstrated that the magnitude of a
wavelet coefficient is proportional to the size of a jump
discontinuity making wavelet coefficients a good
indicator of a shock’s location. Flux limiting methods
(e.g. van Leer 1974, Sweby 1984, Yee 1987) have all
varied their flux-limiting functions with their neigh-
bouring points using either conserved variables or flux
differences. Using these limiters they would limit the
artificial viscosity applied in smooth regions and allow
large amounts near jump discontinuities.

In general, the one dimensional flux-limiting
conservation equations can be written as

@u

@t
þ @f

@x
¼ @

@x
nðFÞ @u

@x

� �
; ð6Þ

International Journal of Computational Fluid Dynamics 505

D
ow

nl
oa

de
d 

by
 [

E
as

t C
hi

na
 U

ni
ve

rs
ity

 o
f 

Sc
ie

nc
e 

an
d 

T
ec

hn
ol

og
y]

 a
t 2

3:
25

 2
3 

Ja
nu

ar
y 

20
16

 



where the viscosity n is a function of the flux limiter F.
In this work, the flux limiter, also called the shock
locator function F, varies with the magnitude of the
wavelet coefficients. Instead of changing the method of
calculating our flux in the shock region, we gradually
introduce viscosity explicitly in order to smoothen the
shock over several points and reduce any spurious
oscillations to values below our error threshold para-
meter E. Recall from Section 2 that because u is
decomposed into wavelet coefficients and their basis
functions, the entire solution is oscillatory in nature.
However, the magnitude of these oscillations is gov-
erned by a prescribed error threshold parameter. It is
imperative that the oscillations introduced by a jump
discontinuity are damped below E, otherwise the
oscillations will remain in the solution indefinitely.
The limiter function F is calculated using two para-
meters, the wavelet coefficient threshold parameter E
and a diffusive threshold parameter Ed. Using this
parameter we calculate a vector of shock locators F for
each variable according to the equation

Fk ¼
jdjmax

k
j

jjujj for 0 < jdjmax

k j � Edjjujj
1 for jdjmax

k j > Edjjujj

(
; ð7Þ

It was found that having one global shock locator taken
as a maximum value for each of the variables defined by

Fk ¼ max ðFkÞ ð8Þ

produces as good results with substantial reduction of
memory. Here,Fk represents the vector of shock locator
functions for each conserved variable in u. The final
scalar locator function Fk is chosen as the maximum
over different variables. Each component is scaled by a
normalisation factor jjujj. In order to stay within the
computational memory limits, a particular computer
may possess, it is necessary to set a maximum level of
resolution jmax. Until the finest level of resolution is
reached, a standard central differencing flux is used to
prevent any dissipation away from jump discontinuities.

To impose an upper bound on the wavelet
coefficients in the discontinuity regions, a user defined
parameter, Ed, is introduced (see Equation (7)). As this
value is reduced the discontinuities become more
smooth. If it is increased, the viscosity is reduced and
steeper more oscillatory discontinuities are observed.
For the current work, the parameter Ed is needed to
ensure the minor oscillations that are present in the
solution are bounded. A general rule of thumb for
prescribing this parameter is Ed ¼ 10E, where again E is
the overall error threshold parameter.

As was previously noted the AWCM is based on
second generation wavelets (Sweldens 1996, 1998),

which results in one-to-one correspondence between
grid points and wavelet coefficients. Because hyper-
bolic conservation laws would require infinite levels of
resolution to obtain an exact solution, our refinement
is limited to a finite level jmax. Until this level is
reached the solution’s error is bounded by the error
threshold parameter E. If the solution starts using
points at the finest level of resolution and the
corresponding wavelet coefficients are larger than
the threshold parameter, spurious oscillations could
occur. It is for this reason that the wavelet coefficients
at the jmax level are used to determine where artificial
viscosity should be applied.

The neighbouring points at levels j 5 jmax as
described in (Vasilyev and Paolucci 1996, 1997)
cannot provide the information needed to distinguish
whether there is a discontinuity present or not. As a
result, calculation of Fk for all levels j 5 jmax is
performed by assigning it the value of the maximum
wavelet coefficient of its surrounding neighbours at
the jmax level. Because of dyadic nature of wavelet
decomposition, the wavelet coefficients only present at
every other point on the computational mesh. To
bypass this problem, a positivity preserving low-pass
filter is applied to smoothen the shock locator
function. Figure 1 shows a typical shock and its
corresponding F. Notice that the shock locator is
located only at the shock and not the contact line or
corners of the expansion wave. This is due to the fact
that the wavelet coefficients associated with those
regions are small enough so that viscosity is not
needed in those regions in order to maintain the
prescribed level of accuracy. It should be noted that
artificial viscosity is added at those locations during
the initial stages of the solution until the error is
reduced below the threshold. For consistency, it
should be understood that the locator function F,
used in the rest of this article, is actually a spatially
averaged function.

3.2. Numerical technique

Because of the intentional simplicity of this scheme, let
us start by considering the scalar conservation
equation

@u

@t
þ @f

@x
¼ 0: ð9Þ

Upon discretising the flux at the xi location using
second-order central differencing and adding diffusive
terms from Equation (6), written in conservative form,
Equation (9) becomes

@ui
@t
¼ � fiþ1 � fi�1

2Dx
þ
niþ1=2

uiþ1�ui
Dx � ni�1=2

ui�ui�1
Dx

Dx
: ð10Þ
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The equation can be rewritten in standard explicit
form with the minimum amount of viscosity required
by the non-linear stability condition (Laney 1998)

@ui
@t
¼ � fiþ1 � fi�1

2Dx

þ 1

2
jaiþ1=2j

uiþ1 � ui
Dx

� jai�1=2j
ui � ui�1

Dx

� �
; ð11Þ

where the advection velocity is defined as

aiþ1=2 ¼
fðuiþ1Þ�fðuiÞ

uiþ1�ui uiþ1 6¼ ui

f0ðuiÞ uiþ1 ¼ ui

8<
: : ð12Þ

Equation (11) is easily implemented using the scalar
conservation law, but when solving Euler equations,
the artificial viscosity application becomes non-trivial.
In the case of Euler equations, the scalar aiþ1/2 is
typically replaced with the Jacobian matrix Aiþ1/2.
Historically, it is common to use some approximation
such as the Roe-averaged Jacobian or some secant
plane slope matrix (Laney 1998). In order to keep the
algorithm simple, the one-wave technique is employed,
which replaces aiþ1/2 with the maximum characteristic
juiþ1/2j þ ciþ1/2 denoted as Aiþ1/2. Although this
technique ensures adequate stability for shocks, it
damps contact discontinuities more than needed.
However, due to not self-sustaining nature of contact
discontinuity, the numerical viscosity is automatically
reduced to zero after few time steps. By making

this change, Equation (11) can be written in a vector
form as

@Ui

@t
¼ �Fiþ1 � Fi�1

2Dx
þ 1

2
Aiþ1=2

Uiþ1 �Ui

Dx

� 1

2
Ai�1=2

Ui �Ui�1
Dx

ð13Þ

with the scalar velocity coefficient defined as

Ai ¼ juij þ ci; ð14Þ

where ci is the speed of sound at the xi location and the
mid-point values are calculated using

Aiþ1=2 ¼ max ðAi;Aiþ1Þ: ð15Þ

The conserved variables at the ith location are
written as Ui so that they are not confused with
the velocity u and the flux vectors are written as F.
If Equation (13) is written in a wave speed split form
it is relatively simple to verify that the scheme
satisfies Harten’s positivity condition (Harten 1983).
It is important to ensure that the artificial viscosity is
strong enough to reduce oscillations as time pro-
gresses. Because the positivity condition is stronger
than the TVD condition it is safe to say that the
scheme should provide enough artificial viscosity to
reduce any oscillations below the threshold E. It is
important to note that there indeed will be oscilla-
tions in the solution of the order of E because of
interpolation error introduced by wavelet threshold-
ing, however the artificial viscosity is used whenever

Figure 1. A typical F function is shown on the right coincident with the shock front shown on the left.
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necessary to maintain those oscillations at a pre-
scribed magnitude.

The flux in relation (13) still assumes the form of a
simple second order accurate central differencing
scheme. Flux limiting methods normally switch be-
tween two different fluxes, one of high order and one of
low order, which can preserve monotonicity. As the
artificial viscosity is written as an explicit addition, the
algorithm will only maintain its monotonicity proper-
ties as long as the flux remains second order accurate.
In general, fluxes of higher than second order accuracy
will be employed, e.g. fourth or sixth order. This is
where the scheme deviates from a flux-limiting method
and appears more like a shock capturing viscosity
scheme. Once the flux becomes of arbitrary order, it no
longer maintains its monotonicity preserving proper-
ties. In order to aid in reducing the oscillations, the
scheme may have an upper bound Ed introduced in
Equation (7) to make sure that the magnitude of the
wavelet coefficients never rise above that value. Setting
this value is a bit artificial but it serves the purpose of
ensuring a smooth transition across self-sustaining
discontinuities. A general rule of thumb is to use Ed
approximately an order of magnitude larger than the
general error threshold parameter E.

Remember that the viscosity is only applied in the
jump discontinuity regions. The flux limiter F is
combined along with the general flux limiting method
described in (Laney 1998) to obtain

@Ui

@t
¼ � @Fi

@x

þ
niþ1=2

Uiþ1�Ui

Dx � ni�1=2
Ui�Ui�1

Dx

Dx
; ð16Þ

niþ1=2 ¼
1

2
Fiþ1=2ðciþ1=2 þ juiþ1=2jÞDx; ð17Þ

where the flux term @Fi

@x is a standard central differen-
cing operator of arbitrary accuracy. In practice, a
fourth order central differencing operator is generally
used. Wavelet decomposition is used for grid adapta-
tion and interpolation, whereas a hierarchical finite
difference scheme, which takes advantage of wavelet
multilevel decomposition, is used for derivative calcu-
lations (Vasilyev and Bowman 2000). Note that in
order to further improve the performance of the shock
capturing scheme the minimum value of ciþ1/2 þ
juiþ1/2j was bounded by the maximum value of
Fiþ1/2ciþ1/2, denoted by jjcFjj?. Thus, the final form
of the numerical viscosity is given by

ni�1=2 ¼
1

2
Fi�1=2max fðci�1=2 þ jui�1=2jÞ; jjcFjj1gDx:

ð18Þ

3.2.1. Multiple dimensions

In multiple dimensions, the shock capturing scheme is
applied in tensorial manner, i.e. the final scheme given
in Equations (16) and (18) is generalised into the form
of Equation (6) with the diffusive terms for the
n-dimensional case symbolically written as

Xn
k¼1

@

@xk
nk
@U

@xk

� �
; ð19Þ

nk ¼
1

2
DxkFC; ð20Þ

C ¼ max fðcþ
ffiffiffiffiffiffiffiffiffi
ukuk
p

Þ; jjcFjj1g; ð21Þ

where derivatives are assumed to be applied in different
directions as in relation (16). Note that for notational
convenience, we use roman subscript to denote grid
point index and italic subscript to denote the direction
or vector component. Also note that there are n
different nk values, where each is proportional to its
respective direction’s grid spacing. In addition, the
characteristic velocity is a scalar quantity. Although it
is possible to use characteristic velocities in each
respective direction, this often results in solution
decoupling between directions and increases the
number of grid points.

4. Numerical results

In order to demonstrate the strengths of this technique,
results are presented in two different sections. The first
section will present only 1-dimensional examples of
standard Riemann problems where an exact solution is
available for comparison. This section demonstrates
the power of the AWCM in conjunction with this
technique and shows that the error is truly bounded by
the threshold parameter E. The second section presents
a numerical simulation of the 2-dimensional
Richtmyer–Meshkov instability that demonstrates
how easily the method is implemented in multiple
dimensions as well as extended to more difficult
problems. Note that in all one-dimensional plots the
numerical solution is interpolated to uniform grid for
better comparison with the analytical solution. In
actual simulations only a small fraction of grid points
is used.

4.1. One-Dimensional Riemann problems

Each of the following examples is solved on computa-
tional meshes with effective resolution of 320, 640 and
1280 points corresponding to jmax levels of 4, 5 and 6,
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respectively. The diffusive threshold parameter Ed was
set to be 0.01 and the CFL number is 1.0.

4.1.1. Weak shock

The first test case is a simple weak shock tube problem
as found in (Toro 1997) with the following initial
conditions

rL ¼ 1:0; rR ¼ 0:125;
uL ¼ 0:0; uR ¼ 0:0;
pL ¼ 1:0; pR ¼ 0:1:

ð22Þ

Figures 2–4 show the density at the final time of 0.24.
Note that for each increase in the level of resolution
jmax, the thickness of the jump discontinuity decreases
by a factor of 2. This is an expected result because the
fact that the numerical solution is smooth and the
artificial viscosity is proportional to Dx, which makes
the method first order accurate at the finest level of
resolution. It should also be noted that the simulation
with jmax of 4 uses 147 points while using an effective
grid of 320 points. Increasing the level of resolution to
jmax ¼ 5, giving an effective grid of 640 points only
requires the use of 31 more points and one more

Figure 2. Left: density for weak shock problem at time 0.24; jmax ¼ 4. Solid line denotes analytical solution. Right: effective
grid size is 320 points, 147 points (.) are used at output time.

Figure 3. Left: density for weak shock problem at time 0.24; jmax ¼ 5. Solid line denotes analytical solution. Right: effective
grid size is 640 points, 178 points (.) are used at output time.
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increase results in a grid of 1280 points using only 30
additional points. Remember that the density plots
show the interpolated uniform grid solution, not the
points used in the calculations. The wavelet coeffi-
cients that were used and saved are shown in the
right plots.

In order to illustrate the local character of the
error of the solution, the error between the
numerical and the exact solutions is plotted in
Figure 5 for simulations at four different resolutions.
The thicknesses of the contact and shock decrease by
a factor of 2 with each increase in the level of
resolution. Notice that the corners of the expansion
have a considerable error, especially in the low
resolution cases. This is due to numerical diffusion
experienced in the initial stages of the simulation,
which are unavoidable because a first order shock
capturing scheme is used. During the first few time
steps, artificial viscosity is added at the initial jump
discontinuity. At this point in time, the expansion,
contact and shock waves are located in the artificial
viscosity region, hence the damping that occurs
affects both the contact and the expansion. Once
enough time has passed the expansion and contact
no longer need any artificial viscosity and remain
undamped for the rest of the solution. It is
important to note that once they reach the point
where damping is no longer needed, they maintain
their steepness for the entire duration of the
simulation because there is now zero losses on those
characteristics. When developing this technique, it
was important to avoid unnecessary damping so that

any acoustics or other phenomena may be able to
exist without being damped away.

In previous work (Vasilyev and Bowman 2000,
Vasilyev 2003), numerical tests were performed to
verify the validity of the error threshold Equation (5)
between simulations of uniform and non-
uniform grids. It was shown that the overall
simulation error decreased linearly with decreasing
E. A similar set of tests were performed in this work
to demonstrate that the error between the adaptive
solution and the uniform solution are bounded by

Figure 4. Left: density for weak shock problem at time 0.24; jmax ¼ 6. Solid line denotes analytical solution. Right: effective
grid size is 1280 points, 208 points (.) are used at output time.

Figure 5. Local error of density for the weak shock for
multiple levels of resolution. Effective grid sizes are 160, 320,
640 and 1280.
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relation (5). These tests were conducted by finding
solutions for the weak shock tube problem using the
new method on a uniform grid of 320 points. The
diffusive threshold Ed is still 0.01 as with the adaptive
grid solutions so that the schemes are consistent.
Figure 6 shows the L1 and the L2 differences
between the uniform and non-uniform grid solutions
for the range of threshold values. It is readily seen
that both norms decrease linearly with E. As a result,
the technique still maintains its adaptive grid
wavelet thresholding properties consistent with
Equation (5).

Note that for all of the figures so far, the flux
calculations are all of the 6th order. The steepness of
the shocks and contacts are directly impacted by the
order of the flux calculations. If the flux were only 2nd

order, Equation (16) would be a standard first order
upwind method. However, if a higher order flux is used
there is a slight but noticeable improvement compared
with the original upwind method as seen in Figure 7.
Beyond the 4th order flux, the improvements are very
slight and mostly noticeable in the spurious oscillations
on the finest level of resolution. Although 8th or higher
order accurate fluxes lead to further improvements of
the amplitude of the spurious oscillations, its increased
computational cost is not fully justified, as similar
improvements can be obtained in a much more cost
effective manner by using lower order flux with smaller
error threshold parameter E. Thus, for practical
purposes flux calculations should be limited to the
4th or 6th order.

4.1.2. Strong shock

One of the main strengths of the AWCM is its inherent
ability to deal with multiple scales. The weak shock tube
problem demonstrated all of the basic features it should
have, but did not illustrate its ability to handle and
stabilise stiff problems. In this section, the numerical
method is applied to a strong shock tube problem found
in (Toro 1997), where the initial conditions are

rL ¼ 1:0; rR ¼ 0:01;
uL ¼ 0:0; uR ¼ 0:0;
pL ¼ 10:0; pR ¼ 0:01:

ð23Þ

Because of the increase in the strength and speed of
the shock, the artificial viscosity applied at the shock
location is much greater than before. Instead of all the
scales being around 1, they vary from 0.01 up to 10.0.
The effect of this change is that it makes the front of
the shock appear to be moving faster than it should as
shown in Figures 8 and 9. Note that the shock is not in
fact moving faster than it should, it merely appears a
few points ahead of the exact solution. This lead does
not change as the solution progresses, it is simply a by-
product of the large amount of artificial viscosity being
applied in that region because of the large normal-
isation factors in relation (7). As the level of resolution
increases, the error decreases by a factor of 2 until it is
barely noticeable in Figure 10.

Figures 8–10 also show that the number of points
needed to span the shock remains consistent with the
number of points used in the weak shock problem,
about 3–4 points. In this case the contact is much more
damped than before due to the large amount of
viscosity used on the shock. However, the method is
adaptive and as the level of resolution is increased, the
contact discontinuity returns to a shape closer to
discontinuity with only few additional points added to
the grid. Figure 8 uses 168 points but has an effective
resolution of 320 points. Increasing the level of
resolution once adds only 41 points but increases the
effective grid to 640 points. Increasing the resolution
further adds 30 more points and attains an effective
grid of 1280 points.

4.2. Two dimensional example

The equations for the evolution of two dimensional
flows are written in terms of the conserved quantities r,
ru, rv and the total energy reT. Writing them in vector
form gives

@U

@t
þ @FðUÞ

@x
þ @GðUÞ

@y
¼ 0 ð24Þ

Figure 6. L1 (––––––) and L2 (–– – ––) differences between
a uniform grid solution (320 points) and adaptive grid
solutions with various threshold values. This shows a linear
convergence with respect to E, which is consistent with
previous adaptive algorithms.
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where U, F(U) and G(U) are defined as

U ¼

r
ru
rv
reT

2
664

3
775; F ¼

ru
ru2 þ P

ruv
ðreT þ PÞu

2
664

3
775;

G ¼

rv
rvu

rv2 þ P

ðreT þ PÞv

2
664

3
775

ð25Þ

and the pressure is given by

P ¼ ðg� 1Þ reT �
1

2
r u2 þ v2
� �� �

; ð26Þ

where g is the ratio of specific heats.
The general vector formulation shown in Equation

(24) can be rewritten by adding the conservative
artificial viscosity terms resulting in

@U

@t
þ @FðUÞ

@x
þ @GðUÞ

@y

¼ 1

2

Xn
k¼1

Dxk
@

@xk
FC

@U

@xk

� � ð27Þ

Figure 7. Density plots compared with exact solution on an effective grid of 320 points are shown for 2nd, 4th and 6th order
flux calculations. The improvements beyond 4th order are mainly visible as spurious oscillation reductions. Solid line denotes
analytical solution.
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where C is the maximum scalar characteristic given by
Equation (21) with a sound speed (gP/r)1/2.

4.2.1. Richtmyer–Meshkov instability

The ability of the proposed shock capturing approach
to solve complex flows involving multi-component gas
mixtures is illustrated by solving two-dimensional
Richtmyer–Meshkov instability problem at Atwood
number of 0.67, which was shown by Abarzhi and
Herrmann (2003) to produce a mushroom vortex
shape commonly associated with instability. The
impinging shock has a Mach number of M ¼ 1.5 and

the interface is sinusoidal, similar to that seen in
(Anuchina et al. 2004). For added complexity, different
specific heat ratios were used for each fluid. In the
starting fluid g1 ¼ 1.4 and in the second fluid g2 ¼
1.67. The computational domain is [0, 4] 6 [71, 1].
Figure 11 shows the initial condition. Note that the
problem is solved in a moving reference frame so that
the instability forms in the centre of the computational
domain. The pressure, density and velocity are
prescribed in region I and all other quantities can be
calculated using standard shock relations and the fact
that the material interface is at thermal equilibrium.
A mass fraction (Yi) formulation is used and Y1 ¼ 1,

Figure 8. Density for strong shock problem at time 0.05; jmax ¼ 4, effective grid size is 320 points, 168 points (.) are used at
output time.

Figure 9. Density for strong shock problem at time 0.05; jmax ¼ 5, effective grid size is 640 points, 209 points (.) are used at
output time.
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Y2 ¼ 0 in regions I and II and vice versa for region III.
The interface location between regions II and III is
given by xint ¼ 27 l0.5cos (py) and the shock is
initially located at x ¼ 1. The boundary conditions
are Poinsot and Lele’s non-reflecting outflow boundary
conditions (Poinsot and Lele 1992) in the x -direction
and periodic in the y-direction. Viscous terms for the
non-reflecting boundary conditions were neglected,
as the x -component of the numerical viscosity is
set to zero on the left and right boundaries to ensure
proper exiting of the characteristics. The tangential
component of the numerical viscosity was left un-
changed, which is consistent with viscous extension of
non-reflecting outflow boundary conditions (Poinsot
and Lele 1992).

In the case of two mixture components, the
continuity equation is replaced by two mass conserva-
tion equations for each mixture

@rYi

@t
þ @rYiuj

@xj
¼ 0; ð28Þ

where Yi (i ¼ 1, 2 ) is the mass fraction of the two
different mixture components, italic subscript j denotes
different directions, and repeated indices imply the
summation. After adding the diffusive terms Equation
(28) becomes

@rYi

@t
þ @rYiuj

@xj

¼ 1

2

Xn
k¼1

Dxk
@

@xk
FC

@rYi

@xk

� �
: ð29Þ

Recall that since there are two different values of g, one
for each component, the equation for the pressure (26)
must be modified to use g that is a function of the mass
fractions Yi and Atwood number

At ¼ r1 � r2
r1 þ r2

: ð30Þ

Given that the interface is at thermal equilibrium we
can define parameter a based upon the density ratio
as

a ¼ r1
r2
¼ R2

R1
¼ 1þ At

1� At
ð31Þ

Figure 10. Density for strong shock problem at time 0.05; jmax ¼ 6, effective grid size is 1280 points, 239 points (.) are used at
output time.

Figure 11. Initial condition of Richtmyer–Meshkov
instability. Region I is the incoming flow producing the
M ¼ 1.5 shock wave. Region II is the gas between the
impinging shock and the material interface with region III.
Atwood number for the interface is At ¼ 0.67.
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and the specific heat ratio of a two component gas as

g ¼ Y1CP1
þ Y2CP2

Y1CV1
þ Y2CV2

ð32Þ

so that the mixture formulation for our two compo-
nent gas g is given by

g ¼ Y1g1ðg2 � 1Þ þ Y2g2ðg1 � 1Þa
Y1ðg2 � 1Þ þ Y2ðg1 � 1Þa : ð33Þ

Using this mixture formulation for the specific heat
ratio g the pressure Equation (26) remains unchanged.

The simulation was performed on a 20 6 10 base
grid with a maximum level of resolution jmax ¼ 7
giving an effective grid of 1280 6 640 points. Because
of the fact that the initial shock is initiated as analytical
discontinuity, some initial transient is observed at the
shock’s original location for the first few time steps. At
a time of t ¼ 0.75 units, Figure 12 shows the density as
the shock is refracted into the second medium. In the
regions, where the shock interacts with the interface, it
behaves much like the twin reflection–rarefaction
observed in shock-bubble interaction problem (Karni
1996, Bagabir and Drikakis 2001). The figure shows
the transmitted shock in gas 2, the side shock
connecting the transmitted shock to the initial shock
in gas 1, and the expansion fan trailing the interface.
All shocks and contacts are well resolved and do not
show any oscillations near them.

As time progresses, the refracted shock wave
continues to move into gas 2 and reflects off the top
and bottom boundaries. Figures 13 and 14 show the
density and the viscosity coefficient jFCj at a time of
t ¼ 1.25 units. The artificial viscosity is localised
around the shock and interface and that the instability

is beginning to form at the centre of the material
interface. Figure 15 shows the total density at a time of
t ¼ 2.65 units. The typical mushroom-shape com-
monly associated with the Richtmyer–Meshkov in-
stability forms with the vortices developing on the

Figure 12. Interaction between the shock and the material
interface. The plot shows the density at an output time of
0.75 units. There are no visible oscillations near the shock or
contact and the interaction between the two is similar to the
regular twin reflection–refraction seen in shock bubble
interface problems.

Figure 13. Density at an output time of 1.25 units. The
shock has passed through into the other gas and has been
refracted, which is why the reflections can be seen from the
top and bottom boundaries. Notice the structure starting to
form at the center of the interface.

Figure 14. Plot of FC at an output time of 1.25 units. The
non-zero regions of FC directly correlate with the
discontinuity regions shown in Figure 13.

Figure 15. Density at an output time of 2.65 units. The
shock has passed through the non-reflecting boundary but
there is still some residual shock reflections in both gases
although they are more visible in gas 1. The instability has
taken its expected shape for Atwood number of 0.67.
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sides. Although the initial conditions are not exactly
the same as (Abarzhi and Herrmann 2003), the
shape of the instability is very similar. Figures 16
and 17 show the corresponding jFCj and the grid at
t ¼ 2.65 units. Notice that jFCj becomes larger in
the vortex region due to the fact that the finest level
of resolution has been reached. Beyond this point,
secondary instability results in creation of small scale

roll-up structures at the interface (e.g. Peng et al.
2003). If these structures are not fully resolved, they
are smeared by numerical diffusion, as illustrated in
Figure 18.

5. Conclusions

A simple numerical approach for solving hyperbolic
conservation equations using the AWCM is presented,
where a localised artificial viscosity is added in an
explicit fashion in regions of discontinuity. The wavelet
coefficients are used to create a shock/jump disconti-
nuity locator function F. Using this function, artificial
viscosity is added explicitly using a conservative central
differencing scheme. Numerical diffusion reduces the
magnitudes of wavelet coefficients to a reasonable level
after the discontinuity has passed. Once the wavelet
coefficients at the finest level of resolution have been
reduced below the prescribed error threshold value E,
the artificial viscosity is shut off and any remaining
physical waves are free to propagate undamped.
Numerous test cases are presented and analysed to
show efficiency, robustness and ease of extending the
method to more complex problems. It is also shown
that the artificial viscosity can be used as a general
non-linear stabilisation technique for any AWCM
simulation. Although the method uses more points
across discontinuities than other high order methods
such as HLLC, ENO, WENO, MUSCL, its use in
conjunction with an adaptive grid makes it computa-
tionally efficient.
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