
March 2012 Doc ID 18153 Rev 3 1/107

UM1021
User manual

STM32F105xx, STM32F107xx, STM32F2xx and STM32F4xx USB
 On-The-Go host and device library

Introduction
The USB On-The-Go Host and Device Library is a firmware and application software 
package for USB (universal serial bus) hosts and devices. This package includes example 
and demonstration software for developing applications using USB full speed and high 
speed transfer types (control, interrupt, bulk and isochronous). 

The aim of the USB OTG Host and Device Library is to provide at least one firmware 
example demonstration for each USB transfer type. This library is designed for use with the 
following evaluation boards:

■ STM3210C-EVAL evaluation board (UM0600) for STM32F105/7 devices 

■ STM3220G-EVAL evaluation board (UM1057) for STM32F20x devices

■ STM3221G-EVAL evaluation board (UM1065) for STM32F21x devices

■ STM3240G-EVAL evaluation board (UM1461) for STM32F40x devices

■ STM3241G-EVAL evaluation board (UM1460) for STM32F41x devices

This document describes all the components of a USB OTG host and device library, 
including examples for the following types of devices:

■ Mass storage, based on the microSD card available on the evaluation boards

■ HID joystick, based on the embedded joystick on the evaluation boards

■ Virtual COM port

■ Direct Firmware Update-based

■ Audio (OUT)

■ Dual Core, based on mass storage and HID examples (available only for 
STM322xG-EVAL and STM324xG-EVAL evaluation boards)

And the following examples for hosts: 

■ Mass storage, using file explorer, write files and slide show

■ HID, dynamic support for mice and keyboards

■ Dual core, for mass storage on the high speed port and HID (keyboards or mice) on the 
full speed port

The package also includes an example of a manual dual role device that enables the core to 
switch between host and device modes depending on user input.

www.st.com

http://www.st.com


Contents UM1021

2/107 Doc ID 18153 Rev 3

Contents

1 Reference information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 USB host and device library overview  . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Main features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 USB host and device library folder structure . . . . . . . . . . . . . . . . . . . . 10

4 USB OTG core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 USB OTG full speed core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 OTG_FS interface main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 USB OTG high speed core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 USB OTG low level driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1 USB OTG low level driver architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 USB OTG low level driver files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.3 USB OTG low level driver configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.4 USB OTG driver programming manual  . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.4.1 Low level driver structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.4.2 Programming considerations when using internal DMA  . . . . . . . . . . . . 15

5.4.3 Selecting USB physical interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.4.4 Programming device drivers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.4.5 Programming host drivers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 USB device library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 USB device library overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2 USB device library files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3 USB device library description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3.1 USB device library flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3.2 USB device library process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3.3 USB device data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3.4 USB device library configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3.5 USB data transfer handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3.6 Using the multi-packet feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



UM1021 Contents

Doc ID 18153 Rev 3 3/107

6.3.7 USB control functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.3.8 FIFO size customization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.4 USB device library functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.5 USB device class interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.6 USB device user interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.7 USB device classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.7.1 HID class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.7.2 Mass storage class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.7.3 Device firmware upgrade (DFU) class . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.7.4 Audio class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.7.5 Communication device class (CDC)  . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.7.6 Adding a custom class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.8 Application layer description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.9 Starting the USB device library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.10 USB device examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.10.1 USB mass storage device example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.10.2 USB human interface device example . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.10.3 Dual core USB device example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.10.4 USB device firmware upgrade example . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.10.5 USB virtual com port (VCP) device example . . . . . . . . . . . . . . . . . . . . . 70

6.10.6 USB audio device example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.10.7 Known limitations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 USB host library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 USB host library files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3 USB host library description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3.1 Host core state machine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3.2 Device enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3.3 Control transfer state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3.4 USB I/O request module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3.5 Host channel control module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3.6 USB host library configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.4 USB host library functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.5 USB host class interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.6 USB host classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Contents UM1021

4/107 Doc ID 18153 Rev 3

7.6.1 Mass storage class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.6.2 HID class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.7 USB host user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.7.1 Library user API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.7.2 User callback functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.7.3 Class callback functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.8 Application layer description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.9 Starting the USB host library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.10 USB host examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.10.1 USB mass storage host example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.10.2 USB HID Host example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.10.3 USB dual core host example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.10.4 USB manual dual role device example  . . . . . . . . . . . . . . . . . . . . . . . . 100

8 Frequently-asked questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9 Troubleshooting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10 Revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



UM1021 List of tables

Doc ID 18153 Rev 3 5/107

List of tables

Table 1. List of terms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 2. USB OTG low level file descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 3. Core configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Standard requests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 5. USB device core files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 6. usbd_core (.c, .h) files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 7. usbd_ioreq (.c, .h) files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 8. usbd_req (.c, .h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 9. USB device class files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 10. usbd_hid_core.c,h files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 11. SCSI commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 12. usbd_msc_core (.c, .h) files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 13. usbd_msc_bot (.c, .h) files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 14. usbd_msc_scsi (.c, .h)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 15. Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 16. DFU states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 17. Supported requests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 18. usbd_dfu_core (.c, .h) files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 19. usbd_dfu_mal (.c, .h) files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 20. usbd_flash_if (.c,.h) files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 21. Audio control requests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 22. usbd_audio_core (.c, .h) files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 23. usbd_audio_xxx_if (.c, .h) files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 24. Audio player states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 25. usbd_cdc_core (.c, .h) files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 26. Configurable CDC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 27. usbd_cdc_xxx_if (.c, .h) files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 28. Variables used by usbd_cdc_xxx_if.c/.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 29. USB host core files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 30. USB I/O request module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 31. Host channel control module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 32. Standard request module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 33. Modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 34. MSC core module description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 35. MSC BOT module description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 36. MSC SCSI commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 37. MSC file system interface functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 38. FatFS API commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 39. HID class modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 40. MSC core module functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 41. Mouse and keyboard initialization & HID report decoding functions. . . . . . . . . . . . . . . . . . 87
Table 42. Document revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



List of figures UM1021

6/107 Doc ID 18153 Rev 3

List of figures

Figure 1. USB host and device library organization overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2. Folder structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3. Driver architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 4. Driver files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 5. USB core structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 6. C compiler-dependant keywords (defined in usb_conf.h file) . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 7. USB device library architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 8. USB device library file structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 9. USB device library process flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 10. USB device data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 11. BOT Protocol architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 12. DFU Interface state transitions diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 13. Folder organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 14. Example of the define for core device handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 15. USBD_Init () function example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 16. Power-on display message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 17. Cable connected display message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 18. USB HID power-on display message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 19. USB HID cable connected display message  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 20. Dual core USB device example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 21. USB dual device power-on display message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 22. USB dual device cable connected display message  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 23. USB device firmware upgrade power-on display message  . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 24. USB device firmware upgrade cable connected display message . . . . . . . . . . . . . . . . . . . 69
Figure 25. USB virtual com port power-on display message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 26. USB virtual com port cable connected display message . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 27. Configuration 1a: Two different hosts for USB and USART . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 28. Configuration 1b: One single Host for USB and USART  . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 29. Configuration 2: Loopback mode (for test purposes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 30. USB audio device power-on display message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 31. USB audio device cable connected display message  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 32. USB host library overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 33. USB host library file tree structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 34. USB host library state machine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 35. Device enumeration steps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 36. Block diagram organization of the MSC driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 37. Folder organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 38. USB mass storage host display message  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 39. USB mass storage explorer display message  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 40. USB mass storage explorer display message (last screen) . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 41. USB mass storage write file display message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 42. USB mass storage slideshow example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 43. USB HID Host connected display message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 44. USB HID Host user key message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 45. USB HID Host text example message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 46. USB dual core host example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 47. Menu structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 48. USB Manual DRD example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



UM1021 List of figures

Doc ID 18153 Rev 3 7/107

Figure 49. Menu structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



Reference information UM1021

8/107 Doc ID 18153 Rev 3

1 Reference information

1.1 Glossary
Table 1 gives a brief definition of acronyms and abbreviations used in this document.

         

Table 1. List of terms

Term Meaning

AHB AMBA High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

CDC Communication Device Class

DCD Device Core Driver

DFU Device Firmware Upgrade

DRD Dual Role Device

FIFO First In, First Out

FS Full Speed (12 Mbps)

HCD Host Core Driver

HID Human Interface Device

HNP Host Negotiation Protocol

HS High Speed (480 Mbps)

LS Low Speed (1.5 Mbps)

Mbps Megabit per second

MSC Mass Storage Class

OTG USB On-The-Go

PHY Physical Layer (as described in the OSI model)

SRP Session Request Protocol

USB Universal Serial Bus



UM1021 USB host and device library overview

Doc ID 18153 Rev 3 9/107

2 USB host and device library overview

The following figure gives an overview of the USB host and device libraries.

Figure 1. USB host and device library organization overview

The USB host and device libraries are built around the common STM32 USB OTG low level 
driver and the USB device and host libraries.

2.1 Main features
The USB host and device library is:

● Compatible with the STM32F105x, STM32F107x, STM32F2xx and STM32F4xx 
devices in HS and FS USB modes

● Fully compliant with the Universal Serial Bus Revision 2.0 Specification

● Optimized to work with the USB OTG peripherals (high speed and full speed) and can 
use all their features

● Built with a reduced footprint, high transfer performance, robustness and a high-quality 
code and documentation package

● Easily extended to support USB OTG features

● Built following a generic and easy-to-use architecture

– able to add further specific vendor classes

– supports multi-interface applications (composite devices)

● Able to support multiple USB OTG cores allowing the use of several cores with the 
same library

Device

DFU

USB device
mass storageHID

Audio class

CDC (virtual COM)

Dual core (MSC + HID)

Manual
DRD

Host MSC
+

Device MSC

Host

HID
(keyboard + mouse)Mass storage

FAT FS file system

USB device library USB host library

USB OTG low-level driver STM32F105/107xx, STM32F2xx
and STM32F4xx standard peripheral libraries

Stacks and libraries

Drivers

MS19706V2



USB host and device library folder structure UM1021

10/107 Doc ID 18153 Rev 3

3 USB host and device library folder structure

Figure 2 illustrates the tree structure of the USB host and device library folder.

Figure 2. Folder structure

The project is composed of three main directories, organized as follows:

1. Libraries: contains the STM32 USB OTG low-level driver, the standard peripherals 
libraries, the host and the device libraries.

2. Project: contains the workspaces and the sources files for the examples given with the 
package.

3. Utilities: contains the STM32 drivers relative to the used boards (LCD, SD card, 
buttons, joystick, etc). This folder contains also the FatFs generic file system used for 
the Host demos. 



UM1021 USB OTG core

Doc ID 18153 Rev 3 11/107

4 USB OTG core

4.1 USB OTG full speed core
The OTG_FS is a dual-role device (DRD) controller that supports both device and host 
functions. It is fully compliant with the On-The-Go Supplement to the USB 2.0 Specification. 
It can also be configured as a host-only or device-only controller, fully compliant with the 
USB 2.0 Specification. In Host mode, the OTG_FS supports full-speed (12 Mbps) and low-
speed (1.5 Mbps) transfers whereas in Device mode, it only supports full-speed transfers. 

The OTG_FS supports both HNP (Host Negotiation Protocol) and SRP (Session Request 
Protocol). The only external device required is a charge pump for the VBUS power supply in 
Host mode. 

4.1.1 OTG_FS interface main features

The OTG_FS interface has the following features:

● Complies with the On-The-Go Supplement to the USB 2.0 Specification (Revision 1.0a)

● Operates in Full Speed (12 Mbps) and Low Speed (1.2 Mbps) modes

● Supports Session Request Protocol (SRP)

● Supports Host Negotiation Protocol (HNP)

● Supports a generic root hub and multi-point capabilities and includes automatic ping 
capabilities

● Four bidirectional endpoints, including 1 control endpoint and 3 device endpoints which 
support bulk, interrupt and isochronous transfers

● All device IN endpoints can support periodic transfers

● Eight host channels with periodic OUT support

● Dedicated FIFO transmission for each of the 4 device IN endpoints. Each FIFO can 
hold multiple packets

● Combined Rx and Tx FIFO size of 320 x 35 bits with Dynamic FIFO sizing (1.25 
Kbytes)

● Eight entries in periodic Tx queue, 8 entries in non-periodic Tx queue

● Controls on-chip FS PHY for USB Host, Device or OTG operations

● Requires an external charge pump for VBUS power supply

● 32-bit AHB Slave interface for accessing control and status registers (CSRs) and the 
data FIFO

4.2 USB OTG high speed core
The OTG_HS is a dual-role device (DRD) controller that supports both peripheral and host 
functions. It is fully compliant with the On-The-Go Supplement to the USB 2.0 Specification. 
It can also be configured as a host-only or peripheral-only controller, fully compliant with the 
USB 2.0 Specification. In Host mode, the OTG_HS supports high-speed (480 Mbps), full-
speed (12 Mbps) and low-speed (1.5 Mbps) transfers whereas in Peripheral mode, it only 
supports high-speed and full-speed transfers. 



USB OTG core UM1021

12/107 Doc ID 18153 Rev 3

The OTG_HS supports both HNP (Host Negotiation Protocol) and SRP (Session Request 
Protocol). The only external device required is a charge pump for the VBUS power supply in 
OTG mode.

The OTG_HS interface has the following features:

● USB-IF certified with the Universal Serial Bus Revision 2.0 Specification

● Supports two PHY interfaces:

– An on-chip Full Speed PHY

– An ULPI (UTMI+ low pin interface) interface for the external High Speed PHY

● Supports the host negotiation protocol (HNP) and the session request protocol (SRP)

● It allows the host to turn VBUS off to save power in OTG applications, with no need for 
external components

● Can be used to monitor VBUS levels with internal comparators

● Supports dynamic host-peripheral role switching

● Software-configurable to operate as:

– An SRP-capable USB HS/FS peripheral (B-device)

– An SRP-capable USB HS/FS/low-speed host (A-device)

– A USB OTG FS dual-role device

● Supports HS/FS SOF (start-of-frame) pulses as well as low-speed (LS) keep-alive 
tokens with:

– SOF pulse pad output capability

– SOF pulse internal connection to Timer 2 (TIM2)

– Configurable framing period

– Configurable end-of-frame interrupt

● Embeds an internal DMA with thresholding support and software selectable AHB burst 
type in DMA mode

● Powersaving features such as system clock stop during USB suspend, switching off of 
the digital core internal clock domains, PHY and DFIFO power management

● Dedicated 4-Kbyte data RAM with advanced FIFO management:

– Memory partition can be configured into different FIFOs to allow flexible and 
efficient use of RAM

– Each FIFO can contain multiple packets

– Memory allocation is performed dynamically

– FIFO size can be configured to values that are not powers of 2 to allow the use of 
contiguous memory locations

● Ensures a maximum USB bandwidth of up to one frame without application intervention

STM32F105/07xx devices embed one USB OTG FS core, while STM32F2xx and 
STM32F4xx devices embed one USB OTG FS core and one HS core.



UM1021 USB OTG low level driver

Doc ID 18153 Rev 3 13/107

5 USB OTG low level driver

5.1 USB OTG low level driver architecture

Figure 3. Driver architecture overview

The low level driver can be used to connect the USB OTG core with the high level stack. The 
user may develop an interface layer above the Low level driver to provide the adequate APIs 
needed by the used stack. 

5.2 USB OTG low level driver files

Figure 4. Driver files

MS19707V1

Host

CIL (Core Interface Layer)

Upper layer: library 
and high-level software

Low-level driver

OTG Device

HCD INT DCDHCD  DCD INT



USB OTG low level driver UM1021

14/107 Doc ID 18153 Rev 3

         

5.3 USB OTG low level driver configuration
The configuration of the USB OTG cores (high and full speed core) is defined in the 
common configuration file (usb_conf.h). The user can enable or disable certain core 
features, define the Tx and Rx FIFO for the device, the periodic and the non-periodic 
transmit FIFO and the Rx FIFO for the host. This file is also used to select Host, Device or 
OTG modes or selecting both Device and Host modes for manual dual role device 
applications.

The table below gives details of the core configurations defined in the usb_conf.h file.

         

Table 2. USB OTG low level file descriptions

Mode Files Description

Common

usb_core.c/h 
This file contains the hardware abstraction layer and the 
USB communication operations.

usb_core.c/h 

This file contains the core configuration for Host, Device and 
OTG modes: Transmit FIFO size, Receive FIFO size, Core 
mode and selected features...etc. 

This file should be copied to the application folder and 
modified depending on the application needs.

usb_bsp_template.c

This file contains the low level core configuration (interrupts, 
GPIO). 
This file should be copied to the application folder and 
modified depending on the application needs.

Host

usb_hcd.c/h
This file contains the host interface layer used by the library 
to access the core.

usb_hcd_int.c/h
This file contains the interrupt subroutines for the Host 
mode.

Device

usb_dcd.c/h
This file contains the device interface layer used by the 
library to access the core.

usb_dcd_int.c/h
This file contains the interrupt subroutines for the Device 
mode.

OTG usb_otg.c/h
This file contains the implementation of the SRP and HNP 
protocols and the interrupts relative to the OTG mode. 

Table 3. Core configurations

Define Description

USB_OTG_FS_CORE Enables the use of the full speed core.

USB_OTG_HS_CORE Enables the use of the high speed core.

RX_FIFO_FS_SIZE Sets the Receive FIFO size for the full speed core.

RX_FIFO_HS_SIZE Sets the Receive FIFO size for the high speed core.

TXn_FIFO_FS_SIZE
Sets the Transmit FIFO size for a device endpoint (Full speed) where n is 
the Index of the endpoint to be used.

TXn_FIFO_HS_SIZE
Sets the Transmit FIFO size for a device endpoint (High Speed core) 
where n is the Index of the endpoint to be used.

TXH_NP_FS_FIFOSIZ Sets the non-periodic Transmit FIFO size for Host mode (Full Speed).



UM1021 USB OTG low level driver

Doc ID 18153 Rev 3 15/107

5.4 USB OTG driver programming manual

5.4.1 Low level driver structures

The low level driver does not have any exportable variables. A global structure 
(USB_OTG_CORE_HANDLE) which keeps all the variables, state and buffers used by the core 
to handle its internal state and transfer flow, should be used to allocate in the application 
layer the handle instance for the core to be used.

This method allows the application to use the same low level driver for both high- and Full 
Speed cores in the same project.

The global USB core structure is defined as follows:

typedef struct USB_OTG_handle
{
  USB_OTG_CORE_CFGS    cfg;
  USB_OTG_CORE_REGS    regs;
#ifdef USE_DEVICE_MODE
  DCD_DEV     dev;
#endif
#ifdef USE_HOST_MODE
  HCD_DEV     host;
#endif
#ifdef USE_OTG_MODE
  OTG_DEV     otg;
#endif
}
USB_OTG_CORE_HANDLE, *PUSB_OTG_CORE_HANDLE;

5.4.2 Programming considerations when using internal DMA

When using the internal DMA with the USB OTG High Speed core, all structures dealing 
with the DMA (data buffer) during the transaction process should be 32-bit aligned. 

TXH_NP_HS_FIFOSIZ
Sets the non-periodic Transmit FIFO size for Host mode (High Speed 
core).

TXH_P_FS_FIFOSIZ Sets the Periodic Transmit FIFO size for Host mode (Full Speed).

TXH_P_HS_FIFOSIZ Sets the Periodic Transmit FIFO size for Host mode (High Speed core).

USB_OTG_ULPI_PHY_
ENABLED

Enables the ULPI PHY for High Speed core.

USB_OTG_EMBEDDED_
PHY_ENABLED

Enables the embedded FS PHY for High Speed core.

USB_OTG_HS_LOW_PW
R_MGMT_SUPPORT

Enables low power management for High Speed core (USB Core clock 
gating, etc.).

USB_OTG_FS_LOW_PW
R_MGMT_SUPPORT

Enables low power management for Full Speed core (USB Core clock 
gating, etc.).

USB_OTG_HS_INTERN
AL_DMA_ENABLED

Enables the internal DMA feature for High Speed core.

USB_OTG_HS_DEDICA
TED_EP1_ENABLED

Enables the dedicated Endpoint 1 feature for Device mode in High Speed 
core.

Table 3. Core configurations (continued)

Define Description



USB OTG low level driver UM1021

16/107 Doc ID 18153 Rev 3

Consequently, the USB_OTG_handle structure is defined to keep all the internal buffers and 
variables used to hold the data to be transferred 32-bit aligned.

When the internal DMA is used, the global USB Core structure should be declared as 
follows:

Figure 5. USB core structure

Note: __ALIGN_BEGIN and __ALIGN_END are compiler-specific keywords defined in the 
usb_conf.h file and are used to align variables on a 32-bit boundary.

Figure 6. C compiler-dependant keywords (defined in usb_conf.h file)



UM1021 USB OTG low level driver

Doc ID 18153 Rev 3 17/107

5.4.3 Selecting USB physical interface

As described in the USB OTG Low Level Driver configuration, the user can select the USB 
Physical interface (PHY) to be used. 

● For the USB OTG Full Speed Core, the embedded Full Speed PHY is used. 

● When using the USB OTG High Speed core, the user can select one of the two PHY 
interfaces:

– A ULPI interface for the external High Speed PHY: the USB HS Core will operate 
in High speed mode

– An on-chip Full Speed PHY: the USB HS Core will operate in Full speed mode

The library provides the capability of selecting the PHY to be used using one of these two

defines (in usb_conf.h file)(as described in Section 5.3: USB OTG low level driver 
configuration on page 14) :

● USE_ULPI_PHY: if the USB OTG HS Core is to be used in High speed mode 

● USE_EMBEDDED_PHY: if the USB OTG HS Core is to be used in Full speed mode

Note: With the ULPI interface, the user can force the core to work in Full Speed mode by 
modifying the usb_core.c file through the ULPIFSLS bit in the OTG_HS_GUSBCFG 
register.

In Host mode, the core speed can be modified when a device with a lower speed is 
connected.

5.4.4 Programming device drivers

Device initialization

The device is initialized using the following function:
DCD_Init (USB_OTG_CORE_HANDLE *pdev, USB_OTG_CORE_ID_TypeDef coreID)

The Rx and Tx FIFOs size and start address are set inside this function to use one more 
endpoints in addition to the control Endpoint (0). The user can change the FIFO settings by 
modifying the default values and changing the FIFO depth for each Tx FIFO in the 
usb_conf.h file.

Endpoint configuration 

Once the USB OTG core is initialized, the device mode is selected. The upper layer may call 
the low level driver to open or close the active endpoint to start transferring data. The 
following two APIs are used: 
uint32_t DCD_EP_Open (USB_OTG_CORE_HANDLE *pdev ,

uint8_t ep_addr,

uint16_t ep_mps,

uint8_t ep_type)

uint32_t DCD_EP_Close (USB_OTG_CORE_DEVICE *pdev,

uint8_t ep_addr)



USB OTG low level driver UM1021

18/107 Doc ID 18153 Rev 3

Device core structure

The DCD_DEV structures contain all the variables and structures used to keep in real-time 
all the information related to devices, the control transfer state machine and also the 
endpoint information and status.
typedef struct _DCD

{

  uint8_t        device_config;

  uint8_t        device_state;

  uint8_t        device_status;

  uint8_t        device_address;

  uint32_t       DevRemoteWakeup;

  USB_OTG_EP     in_ep   [USB_OTG_MAX_TX_FIFOS];

  USB_OTG_EP     out_ep  [USB_OTG_MAX_TX_FIFOS];

  uint8_t        setup_packet [8*3];

  USBD_Class_cb_TypeDef         *class_cb;

  USBD_Usr_cb_TypeDef           *usr_cb;

  uint8_t        *pConfig_descriptor;

 }

DCD_DEV , *DCD_PDEV;

In this structure, device_config holds the current USB device configuration and 
device_state controls the state machine with the following states:
/* EP0 State */

#define USB_OTG_EP0_IDLE 0

#define USB_OTG_EP0_SETUP 1

#define USB_OTG_EP0_DATA_IN 2

#define USB_OTG_EP0_DATA_OUT 3

#define USB_OTG_EP0_STATUS_IN 4

#define USB_OTG_EP0_STATUS_OUT 5

#define USB_OTG_EP0_STALL 6

In this structure, device_status defines the connection, configuration and power status: 
/* Device Status */

#define USB_OTG_DEFAULT  0

#define USB_OTG_ADDRESSED  1

#define USB_OTG_CONFIGURED  2



UM1021 USB OTG low level driver

Doc ID 18153 Rev 3 19/107

USB data transfer flow

The DCD layer offers the user all APIs needed to start and control a transfer flow using the 
following set of functions:
uint32_t   DCD_EP_PrepareRx ( USB_OTG_CORE_HANDLE *pdev,

                        uint8_t   ep_addr,                                  

                        uint8_t *pbuf,                                  

                        uint16_t  buf_len);

uint32_t    DCD_EP_Tx (USB_OTG_CORE_HANDLE *pdev,

                               uint8_t  ep_addr,

                               uint8_t  *pbuf,

                               uint32_t   buf_len);

uint32_t    DCD_EP_Stall (USB_OTG_CORE_HANDLE *pdev,

                              uint8_t   epnum);

uint32_t    DCD_EP_ClrStall (USB_OTG_CORE_HANDLE *pdev,

                                  uint8_t epnum);

uint32_t    DCD_EP_Flush (USB_OTG_CORE_HANDLE *pdev,

                               uint8_t epnum);

The DCD layer of the USB OTG Low Level Driver has one function that must be called by 
the USB interrupt (high speed or full speed):

uint32_t    DCD_Handle_ISR (USB_OTG_CORE_HANDLE *pdev)

The dcd_int.h file contains the function prototypes of the functions called from the library 
core layer to handle the USB events.

USB driver structure definition

typedef struct _USBD_DCD_INT

      {

        uint8_t (* DataOutStage) (USB_OTG_CORE_HANDLE *pdev , uint8_t 
epnum);

        uint8_t (* DataInStage)  (USB_OTG_CORE_HANDLE *pdev , uint8_t 
epnum);

        uint8_t (* SetupStage) (USB_OTG_CORE_HANDLE *pdev);

        uint8_t (* SOF) (USB_OTG_CORE_HANDLE *pdev);

        uint8_t (* Reset) (USB_OTG_CORE_HANDLE *pdev);

        uint8_t (* Suspend) (USB_OTG_CORE_HANDLE *pdev);

        uint8_t (* Resume) (USB_OTG_CORE_HANDLE *pdev);

        uint8_t (* IsoINIncomplete) (USB_OTG_CORE_HANDLE *pdev);

        uint8_t (* IsoOUTIncomplete) (USB_OTG_CORE_HANDLE *pdev);  

        uint8_t (* DevConnected) (USB_OTG_CORE_HANDLE *pdev);

        uint8_t (* DevDisconnected) (USB_OTG_CORE_HANDLE *pdev);   

      }USBD_DCD_INT_cb_TypeDef;

In the library layer, once the USBD_DCD_INT_cb_TypeDef structure is defined, it should be 
assigned to the USBD_DCD_INT_fops pointer.

Example:
USBD_DCD_INT_cb_TypeDef  *USBD_DCD_INT_fops = &USBD_DCD_INT_cb;



USB OTG low level driver UM1021

20/107 Doc ID 18153 Rev 3

Specific OUT and IN interrupt

The USB OTG High Speed core embeds two independent interrupts for endpoint 1 IN and 
endpoint 1 OUT. Consequently, the USBD_OTG_EP1OUT_ISR_Handler and 
USBD_OTG_EP1IN_ISR_Handler can be used to lighten the global USB OTG interrupt.

The specific endpoint feature is selected by enabling the 
USB_OTG_HS_DEDICATED_EP1_ENABLED define in the usb_conf.h file.

Internal DMA use in High speed mode

The USB OTG High Speed core embeds an internal DMA capable of handling the FIFO I/O 
request automatically without using the CPU. However the data structures used in DMA 
mode should be 32-bit aligned. 

The internal DMA feature is selected by enabling the 
USB_OTG_HS_INTERNAL_DMA_ENABLED define in the usb_conf.h file.

Note: The Internal DMA and Specific OUT and IN interrupt features can be used together to   
enhance data transfer performance.

5.4.5 Programming host drivers

Host driver initialization

The host is initialized using the following function:

HCD_Init (USB_OTG_CORE_HANDLE *pdev, USB_OTG_CORE_ID_TypeDef coreID)

This function sets the Rx and periodic/non periodic Tx FIFOs size and start address. The 
user can change the FIFO settings by modifying the default values and changing the FIFO 
depth for each periodic and non periodic Tx FIFO in the usb_conf.h file.

Host channel initialization

Once the USB OTG core is initialized, the host mode is selected. The upper layer may call 
the low level driver to open or close a host channel to start transferring data. The following 
API is used:

uint32_t HCD_HC_Init (USB_OTG_CORE_HANDLE *pdev, uint8_t hc_num)

Host driver structures

After initializing the Host driver (HCD), the low level driver holds several structures and 
buffers for data and URB status monitoring. The host channel structures are kept in the host 
driver and accessed from the upper layer through the host number index.
typedef struct _HCD

{

  uint8_t  Rx_Buffer [MAX_DATA_LENGTH];  

  __IO uint32_t  ConnSts;

  __IO uint32_t  ErrCnt[USB_OTG_MAX_TX_FIFOS];

  __IO uint32_t  XferCnt[USB_OTG_MAX_TX_FIFOS];

  __IO HC_STATUS HC_Status[USB_OTG_MAX_TX_FIFOS];  

  __IO URB_STATE URB_State[USB_OTG_MAX_TX_FIFOS];

  USB_OTG_HC hc [USB_OTG_MAX_TX_FIFOS];

  uint16_t channel [USB_OTG_MAX_TX_FIFOS];



UM1021 USB OTG low level driver

Doc ID 18153 Rev 3 21/107

  USB_OTG_hPort_TypeDef  *port_cb;  

} HCD_DEV , *USB_OTG_USBH_PDEV;

In this structure,

● Rx_Buffer: this buffer holds the IN packet and can be accessed directly from the 
global Host Core structure as follows: pdev->host.Rx_Buffer.

● ConnSts: connection status. It can be accessed directly or by using the 
HCD_IsDeviceConnected () function.

● ErrCnt: holds the number of errors on a channel during one transfer.

● XferCnt: holds the number of IN data already received and available in the Rx_Buffer. 
It can be accessed directly or by using the GetXferCnt () function.

● HC_Status: used internally by the driver. It can be accessed also by the upper layer. It 
keeps the status of the current transaction on a channel.

● URB_State: this variable keeps the transfer status on a host channel.

● Channel: this variable manages the host channels status (used or free).

● port_cb: host port callbacks that contain variables used to track the use of the 
connection or disconnection handler to prevent multiple accesses to this handler.

Example:
if (!(HCD_IsDeviceConnected(pdev)) && 

       (pdev->host.port_cb->DisconnHandled == 0))

  { 

    (…)

    

    pdev->host.port_cb->DisconnHandled = 1; /* Handle to avoid the Re-
entry*/

    USBH_DeInit(pdev, phost);

    (…)

}

Starting a host transfer

Once a host channel is initialized, it can be used to start a host transfer. The following API is 
used:

uint32_t HCD_SubmitRequest (USB_OTG_CORE_HANDLE *pdev , uint8_t hc_num)

At this point, the transfer flow is handled by the HCD interrupts (usb_hcd_int.c/h) and the 
upper layer can monitor the transfer progress using the following APIs:
URB_STATE HCD_GetURB_State (USB_OTG_CORE_HANDLE *pdev , uint8_t ch_num)

HC_STATUS HCD_GetHCState (USB_OTG_CORE_HANDLE *pdev ,  uint8_t ch_num)

uint32_t HCD_GetXferCnt (USB_OTG_CORE_HANDLE *pdev, uint8_t ch_num)

USB host monitoring

It is not possible to start any USB Host transfer without connecting a USB device. The 
application can probe the USB Host port using the following API:
uint32_t HCD_IsDeviceConnected (USB_OTG_CORE_HANDLE *pdev)



USB OTG low level driver UM1021

22/107 Doc ID 18153 Rev 3

USB Host interrupt subroutines

The HCD layer of the USB OTG Low Level Driver has one function to be called from the 
USB interrupt (high speed or full speed):
uint32_t    HCD_Handle_ISR (USB_OTG_CORE_HANDLE *pdev)

The hcd_int.h file contains the function prototypes of the functions called from the library 
core layer to handle the USB events. 

Internal DMA use in high speed mode

The USB OTG High Speed core embeds an internal DMA capable of handling the FIFO I/O 
request automatically without using the CPU. However, the data structures used in DMA 
mode must be 32-bit aligned.

The internal DMA feature is selected by enabling the 
USB_OTG_HS_INTERNAL_DMA_ENABLED define in the usb_conf.h file.



UM1021 USB device library

Doc ID 18153 Rev 3 23/107

6 USB device library

The USB device library: 

● Supports multi-packet transfer features so that a large amount of data can be sent 
without having to split it into maximum packet size transfers.

● Supports up to three back-to-back transfers on control endpoints (compatible with 
OHCI controllers).

● Uses configuration files to change the core and the library configuration without 
changing the library code (Read Only).

● 32-bit aligned data structures to handle DMA-based transfer in High speed modes.

● Supports multi USB OTG core instances from a user level. 

6.1 USB device library overview

Figure 7. USB device library architecture

As shown in the above figure, the USB device library is composed of two main parts: the 
library core and the class drivers.

The library core is composed of three main blocks:

● USB device core

● USB requests

● USB I/O requests

MS19708V1

Application module
Application User callbacks

USB library module
USB device core

USB requests

USB I/O requests

USB class module

Class layer
(HID, audio, MSC, 

DFU, CDC,
vendor-specific)

USB low-level driver module
DCD DCD ISRs

Core interface layer



USB device library UM1021

24/107 Doc ID 18153 Rev 3

6.2 USB device library files

Figure 8. USB device library file structure

The USB device library is based on the generic USB OTG low level driver which supports 
Host, Device and OTG modes and works for High speed, Full speed and Low speed (for 
host mode).

The Core folder contains the USB device library machines as defined by the revision 2.0 
Universal Serial Bus Specification.

The Class folder contains all the files relative to the class implementation. It is compliant 
with the specification of the protocol built in these classes.

6.3 USB device library description

6.3.1 USB device library flow

Handling control endpoint 0

The USB specification defines four transfer types: control, interrupt, bulk and isochronous 
transfers. The USB host sends requests to the device through the control endpoint (in this 
case, control endpoint is endpoint 0). The requests are sent to the device as SETUP 
packets. These requests can be classified into three categories: standard, class-specific 
and vendor-specific. 

Since the standard requests are generic and common to all USB devices, the library 
receives and handles all the standard requests on the control endpoint 0.

The library answers requests without the intervention of the user application if the library has 
enough information about these requests. Otherwise, the library calls user application 
defined callback functions to accomplish the requests when some application actions or 



UM1021 USB device library

Doc ID 18153 Rev 3 25/107

application information are needed. The format and the meaning of the class-specific 
requests and the vendor specific requests are not common for all USB devices.

The library does not handle any of the requests in these categories. Whenever the library 
receives a request that it does not know, the library calls a user-defined callback function 
and passes the request to the user application code. All SETUP requests are processed 
with a state machine implemented in an interrupt model.

An interrupt is generated at the end of the correct USB transfer. The library code receives 
this interrupt. In the interrupt process routine, the trigger endpoint is identified. If the event is 
a setup on endpoint 0, the payload of the received setup is saved and the state machine 
starts.

Transactions on non-control endpoint

The class-specific core uses non-control endpoints by calling a set of functions to send or 
receive data through the data IN and OUT stage callbacks.

Data structure for the SETUP packet

When a new SETUP packet arrives, all the eight bytes of the SETUP packet are copied to 
an internal structure USB_SETUP_REQ req, so that the next SETUP packet cannot 
overwrite the previous one during processing. This internal structure is defined as:
typedef  struct  usb_setup_req 

{

    uint8_t      bmRequest;                      

    uint8_t      bRequest;                           

    uint16_t   wValue;                             

    uint16_t   wIndex;                             

    uint16_t   wLength; 

                           

} USB_SETUP_REQ;

Standard requests

Most of the requests specified in the following table of the USB specification are handled as 
standard requests in the library. The table lists all the standard requests and their valid 
parameters in the library. Requests that are not in this table are considered as non-standard 
requests.



USB device library UM1021

26/107 Doc ID 18153 Rev 3

         

Table 4. Standard requests

S
ta

te

b
m

R
eq

u
es

tT

L
ow

 b
yt

e 
o

f 

H
ig

h
 b

yt
e 

o
f 

L
ow

 b
yt

e 
o

f 

H
ig

h
 b

yt
e 

o
f 

w
In

d
ex

w
L

en
g

th

Comments

GET_STATUS

A, C 80 00 00 00 00 2 Gets the status of the Device.

C 81 00 00 N 00 2
Gets the status of Interface, where N is 
the valid interface number.

A, C 82 00 00 00 00 2
Gets the status of Endpoint 0 OUT 
direction.

A, C 82 00 00 80 00 2
Gets the status of Endpoint 0 IN 
direction.

C 82 00 00 EP 00 2 Gets the status of Endpoint EP.

CLEAR_FEATURE

A, C 00 01 00 00 00 00
Clears the device remote wakeup 
feature.

C 02 00 00 EP 00 00
Clears the STALL condition of 
endpoint EP. EP does not refer to 
endpoint 0.

SET_FEATURE

A, C 00 01 00 00 00 00
Sets the device remote wakeup 
feature.

C 02 00 00 EP 00 00
Sets the STALL condition of endpoint 
EP. EP does not refer to endpoint 0.

SET_ADDRESS D, A 00 N 00 00 00 00
Sets the device address, N is the valid 
device address.

GET_DESCRIPTOR

All 80 00 01 00 00
Non-

0
Gets the device descriptor.

All 80 N 02 00 00
Non-

0

Gets the configuration descriptor; 
where N is the valid configuration 
index.

All 80 N 03 LangID
Non-

0

Gets the string descriptor; where N is 
the valid string index. This request is 
valid only when the string descriptor is 
supported.

GET_CONFIGURATION A, C 80 00 00 00 00 1 Gets the device configuration.

SET_CONFIGURATION A, C 80 N 00 00 00 00
Sets the device configuration; where N 
is the valid configuration number.

GET_INTERFACE C 81 00 00 N 00 1
Gets the alternate setting of the 
interface N; where N is the valid 
interface number.

SET_INTERFACE C 01 M 00 N 00 00

Sets alternate setting M of the 
interface N; where N is the valid 
interface number and M is the valid 
alternate setting of the interface N.



UM1021 USB device library

Doc ID 18153 Rev 3 27/107

Note: In column State: D = Default state; A = Address state; C = Configured state; All = All states. 
EP: D0-D3 = endpoint address; D4-D6 = Reserved as zero; D7= 0: OUT endpoint, 1: IN 
endpoint.

Non-standard requests

All the non-standard requests are passed to the class specific code through callback 
functions. 

● SETUP stage

The library passes all the non-standard requests to the class-specific code with the 
callback pdev->dev.class_cb->Setup (pdev, req) function. The non-standard requests 
include the user-interpreted requests and the invalid requests. User-interpreted 
requests are class- specific requests, vendor-specific requests or the requests that the 
library considers as invalid requests that the application wants to interpret as valid 
requests (for example, the library does not support the Halt feature on endpoint 0 but 
the user application wants so). 

Invalid requests are the requests that are not standard requests and are not user-
interpreted requests. Since pdev->dev.class_cb->Setup (pdev, req) is called after the 
SETUP stage and before the data stage, user code is responsible, in the pdev-
>dev.class_cb->Setup (pdev, req) to parse the content of the SETUP packet (req). If 
a request is invalid, the user code has to call USBD_CtlError(pdev , req) and return to 
the caller of pdev->dev.class_cb->Setup (pdev, req)

For a user-interpreted request, the user code then prepares the data buffer for the 
following data stage if the request has a data stage; otherwise the user code executes 
the request and returns to the caller of pdev->dev.class_cb->Setup (pdev, req).

● DATA stage

The class layer uses the standard USBD_CtlSendData and USBD_CtlPrepareRx to 
send or receive data, the data transfer flow is handled internally by the library and the 
user does not need to split and the data in ep_size packet.

● Status stage

The status stage is handled by the library after returning from the pdev->dev.class_cb-
>Setup (pdev, req) callback.

6.3.2 USB device library process

Figure 9 shows the different layers interaction between the low level driver, the usb device 
library and the application layer.



USB device library UM1021

28/107 Doc ID 18153 Rev 3

Figure 9. USB device library process flowchart

The Application layer has only to call to one function (USBD_Init) to initialize the USB low 
level driver, the USB device library, the hardware on the used board (BSP) and to start the 
library. The application has also to use the general USB ISR and the specific EP1 
subroutines when the USB_OTG_HS_DEDICATED_EP1_ENABLED  define is uncommented 
in the usb_conf.h file.

The USBD_Init function needs however the user callback structure to inform the user layer 
of the different library states and messages and the class callback structure to start the 
class interface.

The USB Low level driver can be linked to the USB device library through the 
USBD_DCD_INT_cb structure.  This structure ensures a total independence between the 
USB device library and the low level driver; enabling the low level driver to be used by any 
other device library.

6.3.3 USB device data flow

The USB Library (USB core and USB class layer) handles the data processing on Endpoint 
0 (EP0) through the IO request layer when a wrapping is needed to manage the multi-packet 
feature on the control endpoint or directly from the usb_dcd.c layer when the other 
endpoints are used since the USB OTG core supports the multi-packet feature. The 
following figure illustrates this data flow scheme.

MS20016V1

Application

USB device classUSB device library

Low level driver

USBD_USR_cb

USBD_Init() USBD_Class_cb

USBD_OTG_ISR_Handler()
USBD_OTG_EP1IN_ISR_Handler()
USBD_OTG_EP1OUT_ISR_Handler()

USBD_DCD_INT_cb



UM1021 USB device library

Doc ID 18153 Rev 3 29/107

Figure 10. USB device data flow

6.3.4 USB device library configuration

The USB device library can be configured using the usbd_conf.h file (a template 
configuration file is available in the “Libraries\STM32_USB_Device_Library\Core\” directory 
of the library).
#define USBD_CFG_MAX_NUM             1

#define USB_MAX_STR_DESC_SIZ       64 

/****  USB_MSC_Class_Layer_Parameter *********/

#define MSC_IN_EP                       0x81

#define MSC_OUT_EP                    0x01

#define MSC_MAX_PACKET         512

#define MSC_MEDIA_PACKET     4096

/****  USB_HID Class_Layer_Parameter *********/

#define HID_IN_EP                       0x81

#define HID_OUT_EP                   0x01

#define HID_IN_PACKET            4

#define HID_OUT_PACKE           4

6.3.5 USB data transfer handling

The USB data transfer handling supports multi-packet transfer features so that a large 
amount of data can be sent without splitting it into maximum packet size transfers. The multi 
packet process is handled by the low level driver through the 
DCD_HandleRxStatusQueueLevel_ISR and DCD_HandleInEP_ISR when the USB 
OTG core is running in Slave mode and by the internal DMA when the DMA mode is used 
(DMA mode available only with the USB OTG HS core).

MS20017V1

USBD_CtlSendData 
USBD_CtlContinueSendData 
USBD_Status USBD_CtlPrepareRx 
USBD_Status  USBD_CtlContinueRx 
USBD_Status  USBD_CtlSendStatus 
USBD_Status  USBD_CtlReceiveStatus 
USBD_GetRxCount

usbd_class_core.cusbd_req.c

usbd_class_core.c

usbd_class_core.c

USBD_GetRxCount

DCD_EP_Tx
DCD_EP_PrepareRx 

DCD_EP_Tx
DCD_EP_PrepareRx 



USB device library UM1021

30/107 Doc ID 18153 Rev 3

6.3.6 Using the multi-packet feature

To transmit data, the DCD_EP_Tx () function is called and to receive data 
DCD_EP_PrepareRx() is called, an with unlimited data length. Internally, the USB OTG 
core checks the available space in the FIFO and processes the transfer, respecting the 
endpoint size. For example, if the endpoint size is configured to work with 64 bytes of data 
and the user wants to transmit / receive N bytes of data, the USB core sends / receives 
several packets of 64 bytes each.

6.3.7 USB control functions

User applications can benefit from a few other USB functions included in a USB device.

Device reset

When the device receives a reset signal from the USB, the library resets and initializes the 
application on both software and hardware.

This function is part of the interrupt routine. Interrupt routine restrictions apply.

Device suspend

When the device detects a suspend condition on the USB, the library stops all the 
operations and puts the system to suspend state (if low power mode is enabled by in the 
usb_conf.h file).

Device resume

When the device detects a resume signal on the USB, the library restores the USB core 
clock and puts the system to idle state (if low power mode is enabled by in the usb_conf.h 
file).

6.3.8 FIFO size customization

In order to use a new endpoint or change the endpoint already used in the application, the 
user has to take care of two things: 

1. Endpoint initialization: this phase is done generally in the usbd_class_core layer  
through the following function:

uint32_t DCD_EP_Open (USB_OTG_CORE_HANDLE *pdev , 

uint8_t ep_addr,

uint16_t ep_mps,

uint8_t ep_type)

The ep_addr should hold the endpoint address, note the endpoint direction is identified 
by the MSB bit (ie "0x80| ep" index  for  ep IN endpoint) and the ep_mps holds the max 
packet size of the endpoints.

2. The FIFO configuration done in the usb_core.c file  in the usb low level driver , the FIFO 
configuration  could be modified by the user through the usb_conf.h file.

#ifdef USB_OTG_FS_CORE

#define RX_FIFO_FS_SIZE128

#define TX0_FIFO_FS_SIZE64

#define TX1_FIFO_FS_SIZE128

#define TX2_FIFO_FS_SIZE0



UM1021 USB device library

Doc ID 18153 Rev 3 31/107

#define TX3_FIFO_FS_SIZE0

#endif

#ifdef USB_OTG_HS_CORE

#define RX_FIFO_HS_SIZE512

#define TX0_FIFO_HS_SIZE128

#define TX1_FIFO_HS_SIZE384

#define TX2_FIFO_HS_SIZE0

#define TX3_FIFO_HS_SIZE0

#define TX4_FIFO_HS_SIZE0

#define TX5_FIFO_HS_SIZE0
#endif

The configuration of the FIFO is described in detail in reference manuals RM0033 and 
RM0008. The Rx and the TXs FIFOs can be calculated as follows: 

1. Receive data FIFO size = RAM for setup packets + Data Out endpoint control 
information + Data Out packets + Miscellaneous 

Note: Space = ONE 32-bit word

– RAM for setup packets  = 10

– Data Out endpoint control information = 1 space (one space for status information 
written to the FIFO along with each received packet).

– Data Out packets = (largest packet size / 4) + 1 space (MINIMUM to receive 
packets) OR Data Out packets  = at least 2*(largest packet size / 4) + 1 space (if 
high-bandwidth endpoint is enabled or multiple isochronous endpoints)

– Miscellaneous = 1 space per Data Out endpoint (one space for transfer complete 
status information also pushed to the FIFO with each endpoint's last packet)

2. MINIMUM RAM space required for each Data In endpoint Tx FIFO = MAX packet size 
for that particular Data In endpoint. More space allocated in the Data In endpoint Tx 
FIFO results in a better performance on the USB and can hide latencies on the AHB.

3. Txn minimum size = 16 words. (where, n is the Transmit FIFO index).

4. When a Tx FIFO is not used, the Configuration should be as follows: 

Case 1:  n > m and Txn is not used (where, n,m are the Transmit FIFO indexes)

– Txm can use the space allocated for Txn.

Case 2:  n < m and Txn is not used (where, n,m are the Transmit FIFO indexes)

– Txn should be configured with the minimum space of 16 words

5. The FIFO is used optimally when used TxFIFOs are allocated in the top of the FIFO. 
For example, use EP1 and EP2 as IN instead of EP1 and EP3 as the IN ones.

The total FIFO size for the used USB OTG core:  for the USB OTG FS core, the total  
FIFO size is 320 * 32 bits while for the USB OTG HS core, the total  FIFO size is 1024 * 
32 bits.

Example

If the application uses 1 IN endpoint for control with MPS = 64 Bytes,  1 OUT Endpoint for 
Control with MPS =  64 Bytes and 1 IN Bulk endpoint for the class with  MPS = 512 Bytes.



USB device library UM1021

32/107 Doc ID 18153 Rev 3

The EP0 IN and OUT are configured by the USB Device library. However the user should 
open the IN endpoint 1 in the class layer as shown below:

DCD_EP_Open (pdev,
0x81, 
512,
USB_OTG_EP_BULK)

and configure the TX1_FIFO_FS_SIZE using the formula described in reference manuals 
RM0033, RM0090 and RM0008.

6.4 USB device library functions
The Core layer contains the USB device library machines as defined by the revision 2.0 
Universal Serial Bus Specification. The following table presents the USB device core files.

         

         

Table 5. USB device core files 

Files Description

usbd_core (.c, .h)
This file contains the functions for handling all USB 
communication and state machine.

usbd_req( .c, .h)
This file includes the requests implementation listed in 
Chapter 9 of the specification.

usbd_ioreq (.c, .h) This file handles the results of the USB transactions.

usbd_conf.h
This file contains the configuration of the device:

– vendor ID, Product Id, Strings…etc

Table 6. usbd_core (.c, .h) files

Functions Description

void USBD_Init

(USB_OTG_CORE_HANDLE *pdev,

USB_OTG_CORE_ID_TypeDef coreID,

USBD_Class_cb_TypeDef *class_cb, 

USBD_Usr_cb_TypeDef *usr_cb) 

Initializes the device library and loads the 
class driver and the user call backs.

USBD_Status  USBD_DeInit

(USB_OTG_CORE_HANDLE *pdev) 
Un-initializes the device library.

uint8_t USBD_SetupStage

(USB_OTG_CORE_HANDLE *pdev)
Handles the setup stage.

uint8_t USBD_DataOutStage

(USB_OTG_CORE_HANDLE *pdev , uint8_t 
epnum)

Handles the Data Out stage.

uint8_t USBD_DataInStage 

(USB_OTG_CORE_HANDLE *pdev , uint8_t 
epnum)

Handles the Data In stage.

uint8_t USBD_Reset

(USB_OTG_CORE_HANDLE  *pdev)
Handles the reset event.



UM1021 USB device library

Doc ID 18153 Rev 3 33/107

         

uint8_t USBD_Resume

(USB_OTG_CORE_HANDLE  *pdev)
Handles the resume event.

uint8_t USBD_Suspend

(USB_OTG_CORE_HANDLE  *pdev)
Handles the suspend event.

uint8_t USBD_SOF

(USB_OTG_CORE_HANDLE  *pdev)
Handles the SOF event.

USBD_Status USBD_SetCfg

(USB_OTG_CORE_HANDLE  *pdev, uint8_t 
cfgidx)

Configures the device and starts the 
interface.

USBD_Status USBD_ClrCfg

(USB_OTG_CORE_HANDLE  *pdev, uint8_t 
cfgidx)

Clears the current configuration.

uint8_t 
USBD_IsoINIncomplete(USB_OTG_CORE_HANDLE  
*pdev)

Handles incomplete isochronous IN 
transfer

uint8_t 
USBD_IsoOUTIncomplete(USB_OTG_CORE_HANDLE  
*pdev)

Handles incomplete isochronous OUT 
transfer.

uint8_t 
USBD_DevConnected(USB_OTG_CORE_HANDLE  
*pdev)

Handles device connection event.

static uint8_t 
USBD_DevDisconnected(USB_OTG_CORE_HANDLE  
*pdev)

Handles device disconnection event.

Table 7. usbd_ioreq (.c, .h) files

Functions Description

USBD_Status  USBD_CtlSendData

( USB_OTG_CORE_HANDLE  *pdev, uint8_t 
*pbuf, uint16_t len)

Sends the data on the control pipe.

USBD_Status  USBD_CtlContinueSendData 
(USB_OTG_CORE_HANDLE  *pdev, uint8_t 
*pbuf, uint16_t len)

Continues sending data on the control 
pipe.

USBD_Status  USBD_CtlPrepareRx 

(USB_OTG_CORE_HANDLE  *pdev, uint8_t 
*pbuf, uint16_t len)

Prepares the core to receive data on the 
control pipe.

USBD_Status  USBD_CtlContinueRx 

(USB_OTG_CORE_HANDLE  *pdev, uint8_t 
*pbuf, uint16_t len)

Continues receiving data on the control 
pipe.

Table 6. usbd_core (.c, .h) files (continued)

Functions Description



USB device library UM1021

34/107 Doc ID 18153 Rev 3

         

USBD_Status  USBD_CtlSendStatus 

(USB_OTG_CORE_HANDLE  *pdev)

Sends a zero length packet on the control 
pipe.

USBD_Status  USBD_CtlReceiveStatus

(USB_OTG_CORE_HANDLE  *pdev)

Receives a zero length packet on the 
control pipe.

Table 8. usbd_req (.c, .h)

Functions Description

void USBD_GetString(uint8_t *desc, 
uint8_t *unicode, uint16_t *len)

Converts an ASCII string into Unicode one 
to format a string descriptor.

static uint8_t USBD_GetLen(uint8_t *buf) Returns the string length.

USBD_Status  USBD_StdDevReq 

(USB_OTG_CORE_HANDLE  *pdev, 

USB_SETUP_REQ  *req)

Handles standard USB device requests.

USBD_Status  USBD_StdItfReq

(USB_OTG_CORE_HANDLE  *pdev,

USB_SETUP_REQ  *req)

Handles standard USB interface requests.

USBD_Status  USBD_StdEPReq

(USB_OTG_CORE_HANDLE  *pdev,

USB_SETUP_REQ  *req)

Handles standard USB endpoint requests.

static void USBD_GetDescriptor

(USB_OTG_CORE_HANDLE  *pdev,

USB_SETUP_REQ *req)

Handles Get Descriptor requests.

static void USBD_SetAddress

(USB_OTG_CORE_HANDLE  *pdev,

USB_SETUP_REQ *req)

Sets new USB device address.

static void USBD_SetConfig

(USB_OTG_CORE_HANDLE  *pdev, 

USB_SETUP_REQ *req)

Handles Set device configuration request.

static void USBD_GetConfig

(USB_OTG_CORE_HANDLE  *pdev, 

USB_SETUP_REQ *req)

Handles Get device configuration request.

static void USBD_GetStatus

(USB_OTG_CORE_HANDLE  *pdev, 

USB_SETUP_REQ *req)

Handles Get Status request.

static void USBD_SetFeature

(USB_OTG_CORE_HANDLE  *pdev,

USB_SETUP_REQ *req)

Handles Set device feature request.

static void USBD_ClrFeature

(USB_OTG_CORE_HANDLE  *pdev,

USB_SETUP_REQ *req)

Handles Clear device feature request.

Table 7. usbd_ioreq (.c, .h) files (continued)

Functions Description



UM1021 USB device library

Doc ID 18153 Rev 3 35/107

6.5 USB device class interface
The USB class is chosen during the USB Device library initialization by selecting the 
corresponding class callback structure. The class structure is defined as follows: 
typedef struct _Device_cb

    {

      uint8_t  (*Init)         (void *pdev , uint8_t cfgidx);

      uint8_t  (*DeInit)       (void *pdev , uint8_t cfgidx);

     /* Control Endpoints*/

      uint8_t  (*Setup)        (void *pdev , USB_SETUP_REQ  *req);  

      uint8_t  (*EP0_TxSent)   (void *pdev );    

      uint8_t  (*EP0_RxReady)  (void *pdev );

      /* Class Specific Endpoints*/

      uint8_t  (*DataIn)       (void *pdev , uint8_t epnum);   

      uint8_t  (*DataOut)      (void *pdev , uint8_t epnum); 

      uint8_t  (*SOF)          (void *pdev); 

      uint8_t  (*IsoINIncomplete)  (void *pdev); 

      uint8_t  (*IsoOUTIncomplete)  (void *pdev);   

      uint8_t  *(*GetConfigDescriptor)( uint8_t speed , uint16_t *length); 

    #ifdef USB_OTG_HS_CORE 

      uint8_t  *(*GetOtherConfigDescriptor)( uint8_t speed , uint16_t 
*length);   

    #endif

    #ifdef USB_SUPPORT_USER_STRING_DESC 

      uint8_t  *(*GetUsrStrDescriptor)( uint8_t speed ,uint8_t index, 
uint16_t

*length);   

    #endif    

    } USBD_Class_cb_TypeDef;

● Init: this callback is called when the device receives the set configuration request; in 
this function the endpoints used by the class interface are open. 

● DeInit: This callback is called when the clear configuration request has been received; 
this function closes the endpoints used by the class interface.

● Setup: This callback is called to handle the specific class setup requests.

● EP0_TxSent: This callback is called when the send status is finished.

● EP0_RxSent: This callback is called when the receive status is finished.

void USBD_ParseSetupRequest

( USB_OTG_CORE_HANDLE  *pdev,

USB_SETUP_REQ *req)

Copies request buffer into setup structure.

void USBD_CtlError

( USB_OTG_CORE_HANDLE  *pdev,

USB_SETUP_REQ *req)

Handles USB Errors on the control pipe.

Table 8. usbd_req (.c, .h) (continued)

Functions Description



USB device library UM1021

36/107 Doc ID 18153 Rev 3

● DataIn: This callback is called to perform the data in stage relative to the non-control 
endpoints.

● DataOut: This callback is called to perform the data out stage relative to the non-
control endpoints.

● SOF: This callback is called when a SOF interrupt is received; this callback can be 
used to synchronize some processes with the Start of frame.

● IsoINIncomplete: This callback is called when the last isochronous IN transfer is 
incomplete.

● IsoOUTIncomplete: This callback is called when the last isochronous OUT transfer is 
incomplete.

● GetConfigDescriptor: This callback returns the USB Configuration descriptor.

● GetOtherConfigDescriptor: This callback returns the other configuration descriptor of 
the used class in High Speed mode.

● GetUsrStrDescriptor: This callback returns the user defined string descriptor.

Note: When a callback is not used, it can be set to NULL in the callback structure.

6.6 USB device user interface
The Library provides user callback structure to allow user to add special code to manage 
the USB events. This user structure is defined as follows:
typedef struct _USBD_USR_PROP

{

void (*Init)(void);   

void (*DeviceReset)(uint8_t speed); 

void (*DeviceConfigured)(void);

void (*DeviceSuspended)(void);

void (*DeviceResumed)(void);  

void (*DeviceConnected)(void);  

void (*DeviceDisconnected)(void);

}

USBD_Usr_cb_TypeDef;

● Init: This callback is called when the device library starts up.

● DeviceReset: This callback is called when the device has detected a reset event from 
the host.

● DeviceConfigured: this callback is called when the device receives the set 
configuration request. 

● DeviceSuspended: This callback is called when the device has detected a suspend 
event from the host.

● DeviceResumed: This callback is called when the device has detected a resume event 
from the host.

● DeviceConnected: This callback is called when the device is connected to the host.

● DeviceDisconnected: This callback is called when the device is disconnected from the 
host.



UM1021 USB device library

Doc ID 18153 Rev 3 37/107

The Library provides descriptor callback structures to allow user to manage the device and 
string descriptors at application run time. This descriptors structure is defined as follows: 
typedef struct _Device_TypeDef

{

uint8_t  *(*GetDeviceDescriptor)( uint8_t speed , 
uint16_t *length);  

uint8_t  *(*GetLangIDStrDescriptor)( uint8_t speed ,
uint16_t *length); 

uint8_t  *(*GetManufacturerStrDescriptor)( uint8_t speed ,
uint16_t *length);  

uint8_t  *(*GetProductStrDescriptor)( uint8_t speed ,
uint16_t *length);  

uint8_t  *(*GetSerialStrDescriptor)( uint8_t speed ,
uint16_t *length);  

uint8_t  *(*GetConfigurationStrDescriptor)( uint8_t speed ,
uint16_t *length);  

uint8_t  *(*GetInterfaceStrDescriptor)( uint8_t speed ,
uint16_t *length);   

#ifdef USB_SUPPORT_USER_STRING_DESC

uint8_t*  (*Get_USRStringDesc) (uint8_t speed, uint8_t idx ,
uint16_t *length);  

#endif /* USB_SUPPORT_USER_STRING_DESC */  

 } USBD_DEVICE, *pUSBD_DEVICE;

● GetDeviceDescriptor: This callback returns the device descriptor.

● GetLangIDStrDescriptor: This callback returns the Language ID string descriptor.

● GetManufacturerStrDescriptor: This callback returns the manufacturer string 
descriptor.

● GetProductStrDescriptor: This callback returns the product string descriptor.

● GetSerialStrDescriptor: This callback returns the serial number string descriptor.

● GetConfigurationStrDescriptor: This callback returns the configuration string 
descriptor.

● GetInterfaceStrDescriptor: This callback returns the interface string descriptor.

● Get_USRStringDesc: This callback returns the user defined string descriptor.

Note: The usbd_desc.c file provided within USB Device examples implement these callback 
bodies. 



USB device library UM1021

38/107 Doc ID 18153 Rev 3

6.7 USB device classes
The class module contains all the files relative to the class implementation. It complies with 
the specification of the protocol built in these classes. 

The table below presents the USB device class files for the MSC and HID classes.

         

Table 9. USB device class files

Class Files Description

HID usbd_hid (.c, .h)
This file contains the HID class callbacks (driver) and the 
configuration descriptors relative to this class.

MSC

usbd_msc( .c, .h)
This file contains the MSC class callbacks (driver) and the 
configuration descriptors relative to this class.

usbd_bot (.c, .h) This file handles the bulk only transfer protocol.

usbd_scsi (.c, .h) This file handles the SCSI commands.

usbd_info (.c,.h)
This file contains the vital inquiry pages and the sense data 
of the mass storage devices.

usbd_mem.h
This file contains the function prototypes of the called 
functions from the SCSI layer to have access to the physical 
media

DFU

usbd_dfu_core 
(.c,.h)

This file contains the DFU class callbacks (driver) and the 
configuration descriptors relative to this class.

usbd_flash_if 
(.c,.h)

This file contains the DFU class callbacks relative to the 
internal Flash memory interface.

usbd_otp_if (.c,.h)
This file contains the DFU class callbacks relative to the 
OTP memory interface.

usbd_template_if 
(.c,.h)

This file provides a template driver which allows you to 
implement additional memory interfaces.

Audio

usbd_audio_core 
(.c,.h)

This file contains the AUDIO class callbacks (driver) and the 
configuration descriptors relative to this class.

usbd_audio_out_if 
(.c,.h)

This file contains the lower layer audio out driver (from USB 
host to output speaker).

CDC

usbd_cdc_core 
(.c,.h)

This file contains the CDC class callbacks (driver) and the 
configuration descriptors relative to this class.

usbd_cdc_if_templat
e (.c,.h)

This file provides a template driver which allows you to 
implement low layer functions for a CDC terminal.



UM1021 USB device library

Doc ID 18153 Rev 3 39/107

6.7.1 HID class

HID class implementation

This module manages the MSC class V1.11 following the “Device Class Definition for 
Human Interface Devices (HID) Version 1.11 June 27, 2001". This driver implements the 
following aspects of the specification:

● The boot interface subclass

● The mouse protocol

● Usage page: generic desktop

● Usage: joystick

● Collection: application

HID user interface

The USBD_HID_SendReport can be used by the application to send HID reports, the HID 
driver, in this release, handles only IN traffic. An example of use of this function is shown 
below: 
static uint8_t HID_Buffer [4];

USBD_HID_SendReport (&USB_OTG_FS_dev,

USBD_HID_GetPos(),

4);

static uint8_t *USBD_HID_GetPos (void)

{

HID_Buffer[0] = 0;

HID_Buffer[1] = GetXPos();;

HID_Buffer[2] = GetXPos();

HID_Buffer[3] = 0;

return HID_Buffer;

}

HID core files

         

Table 10. usbd_hid_core.c,h files

Functions Description

static uint8_t  USBD_HID_Init 

(void  *pdev, uint8_t cfgidx)

Initializes the HID interface and open the used 
endpoints.

static uint8_t  USBD_HID_DeInit 

(void  *pdev, uint8_t cfgidx)

Un-Initializes the HID layer and close the used 
endpoints.

static uint8_t  USBD_HID_Setup (void  
*pdev, USB_SETUP_REQ *req)

Handles the HID specific requests.

uint8_t USBD_HID_SendReport     
(USB_OTG_CORE_HANDLE  *pdev, uint8_t 
*report, uint16_t len)

Sends HID reports.



USB device library UM1021

40/107 Doc ID 18153 Rev 3

6.7.2 Mass storage class

Mass storage class implementation

This module manages the MSC class V1.0 following the “Universal Serial Bus Mass Storage 
Class (MSC) Bulk-Only Transport (BOT) Version 1.0 Sep. 31, 1999".

This driver implements the following aspects of the specification:

● Bulk-only transport protocol

● Subclass: SCSI transparent command set (ref. SCSI Primary Commands - 3)

The USB mass storage class is built around the Bulk Only Transfer (BOT). It uses the SCSI 
transparent command set. 

A general BOT transaction is based on a simple basic state machine: it begins with ready 
state (idle state) and if a CBW is received from the host, three cases can be managed:

● DATA-OUT-STAGE: when direction flag is set to “0”, the device must be prepared to 
receive an amount of data indicated in dCBWDataTransferLength in the CBW block. 
At the end of data transfer, a CSW is returned with the remaining data length and the 
STATUS field.

● DATA-IN-STAGE: when direction flag is set to “1”, the device must be prepared to send 
an amount of data indicated in dCBWDataTransferLength in the CBW block. At the 
end of data transfer, a CSW is returned with the remaining data length and the STATUS 
field.

● ZERO DATA: in this case, no data stage is needed: the CSW block is sent immediately 
after the CBW one.

Figure 11. BOT Protocol architecture

 

Ready

Command Transport
(CBW)

Data Out Data In

Status
Transport

MS19705V1



UM1021 USB device library

Doc ID 18153 Rev 3 41/107

The following table shows the supported SCSI commands.
         

As required by the BOT specification, the following requests are implemented: 

● Bulk-only mass storage reset (class-specific request)

This request is used to reset the mass storage device and its associated interface. This 
class-specific request should prepare the device for the next CBW from the host. 

To generate the BOT Mass Storage Reset, the host must send a device request on the 
default pipe of:

– bmRequestType: Class, interface, host to device

– bRequest field set to 255 (FFh)

– wValue field set to ‘0’

– wIndex field set to the interface number

– wLength field set to ‘0’

Get Max LUN (class-specific request)

The device can implement several logical units that share common device characteristics. 
The host uses bCBWLUN to indicate which logical unit of the device is the destination of the 
CBW. The Get Max LUN device request is used to determine the number of logical units 
supported by the device. 

To generate a Get Max LUN device request, the host sends a device request on the default 
pipe of:

– bmRequestType: Class, Interface, device to host

– bRequest field set to 254 (FEh)

– wValue field set to ‘0’

– wIndex field set to the interface number

– wLength field set to ‘1’

Table 11. SCSI commands

Command specification Command Remark

SCSI

SCSI_PREVENT_REMOVAL,

SCSI_START_STOP_UNIT, 

SCSI_TEST_UNIT_READY, 

SCSI_INQUIRY, 

SCSI_READ_CAPACITY10, 

SCSI_READ_FORMAT_CAPACITY, 

SCSI_MODE_SENSE6, 

SCSI_MODE_SENSE10

SCSI_READ10, 

SCSI_WRITE10, 

SCSI_VERIFY10

READ_FORMAT_CAPACITY 
(0x23) is an UFI command. 



USB device library UM1021

42/107 Doc ID 18153 Rev 3

MSC Core files 

         

         

Table 12. usbd_msc_core (.c, .h) files

Functions Description

static uint8_t  USBD_MSC_Init (void  
*pdev, uint8_t cfgidx)

Initializes the MSC interface and opens the used 
endpoints.

static uint8_t  USBD_MSC_DeInit 
(void  *pdev, uint8_t cfgidx)

De-initializes the MSC layer and close the used 
endpoints.

static uint8_t  USBD_MSC_Setup (void  
*pdev, USB_SETUP_REQ *req)

Handles the MSC specific requests.

uint8_t  USBD_MSC_DataIn (void  
*pdev, uint8_t epnum)

Handles the MSC Data In stage.

uint8_t  USBD_MSC_DataOut (void  
*pdev, uint8_t epnum)

Handles the MSC Data Out stage.

Table 13. usbd_msc_bot (.c, .h) files

Functions Description

void MSC_BOT_Init 

(USB_OTG_CORE_HANDLE  *pdev)
Initializes the BOT process and physical media.

void MSC_BOT_Reset 
(USB_OTG_CORE_HANDLE  *pdev)

Resets the BOT Machine.

void MSC_BOT_DeInit 
(USB_OTG_CORE_HANDLE  *pdev)

De-Initializes the BOT process. 

void MSC_BOT_DataIn 
(USB_OTG_CORE_HANDLE  *pdev, uint8_t 
epnum)

Handles the BOT data IN Stage.

void MSC_BOT_DataOut 
(USB_OTG_CORE_HANDLE  *pdev, uint8_t 
epnum)

Handles the BOT data OUT Stage.

static void  MSC_BOT_CBW_Decode 
(USB_OTG_CORE_HANDLE  *pdev)

Decodes the CBW command and sets the BOT 
state machine accordingly.

static void  
MSC_BOT_SendData(USB_OTG_CORE_HANDLE  
*pdev, uint8_t* buf,   uint16_t len)

Sends the requested data.

void  MSC_BOT_SendCSW 
(USB_OTG_CORE_HANDLE  *pdev, uint8_t 
CSW_Status)

Sends the Command Status Wrapper.

static void  MSC_BOT_Abort 
(USB_OTG_CORE_HANDLE  *pdev)

Aborts the current transfer.

void  MSC_BOT_CplClrFeature 
(USB_OTG_CORE_HANDLE  *pdev, uint8_t 
epnum)

Completes the Clear Feature request.



UM1021 USB device library

Doc ID 18153 Rev 3 43/107

         

usbd_msc_mem (.h)

This file contains the function prototypes of the functions called from the SCSI layer to have 
access to the physical media.

Table 14. usbd_msc_scsi (.c, .h)

Functions Description

int8_t SCSI_ProcessCmd 
(USB_OTG_CORE_HANDLE  *pdev, uint8_t 
lun,    uint8_t *params)

Processes the SCSI commands.

static int8_t SCSI_TestUnitReady 
(uint8_t lun, uint8_t *params)

Processes the SCSI Test Unit Ready command.

static int8_t  SCSI_Inquiry (uint8_t 
lun, uint8_t *params)

Processes the Inquiry command.

static int8_t SCSI_ReadCapacity10 
(uint8_t lun, uint8_t *params)

Processes the Read Capacity 10 command.

static int8_t 
SCSI_ReadFormatCapacity (uint8_t 
lun, uint8_t *params)

Processes the Read Format Capacity command.

static int8_t SCSI_ModeSense6 
(uint8_t lun, uint8_t *params)

Processes the Mode Sense 6 command.

static int8_t SCSI_ModeSense10 
(uint8_t lun, uint8_t *params)

Processes the Mode Sense 10 command.

static int8_t SCSI_RequestSense 
(uint8_t lun, uint8_t *params)

Processes the Request Sense command.

void SCSI_SenseCode(uint8_t lun, 
uint8_t sKey, uint8_t ASC)

Loads the last error code in the error list.

static int8_t 
SCSI_StartStopUnit(uint8_t lun, 
uint8_t *params)

Processes the Start Stop Unit command.

static int8_t SCSI_Read10(uint8_t 
lun , uint8_t *params)

Processes the Read10 command.

static int8_t SCSI_Write10 (uint8_t 
lun , uint8_t *params)

Processes the Write10 command.

static int8_t SCSI_Verify10(uint8_t 
lun , uint8_t *params)

Processes the Verify10 command.

static int8_t SCSI_CheckAddressRange 
(uint8_t lun , uint32_t blk_offset , 
uint16_t blk_nbr)

Checks if the LBA is inside the address range.

static int8_t SCSI_ProcessRead 
(uint8_t lun)

Handles the Burst Read process.

static int8_t SCSI_ProcessWrite 
(uint8_t lun)

Handles the Burst Write process.



USB device library UM1021

44/107 Doc ID 18153 Rev 3

Disk operation structure definition

typedef struct _USBD_STORAGE

{

int8_t (* Init) (uint8_t lun);

int8_t (* GetCapacity) (uint8_t lun, uint32_t *block_num, uint16_t 
*block_size);

int8_t (* IsReady) (uint8_t lun);

int8_t (* IsWriteProtected) (uint8_t lun);

int8_t (* Read) (uint8_t lun, uint8_t *buf, uint32_t blk_addr, uint16_t 
blk_len);

int8_t (* Write)(uint8_t lun, uint8_t *buf, uint32_t blk_addr, uint16_t 
blk_len);

int8_t (* GetMaxLun)(void);

int8_t *pInquiry;

}USBD_STORAGE_cb_TypeDef;

In the media access file from user layer, once the USBD_STORAGE_cb_TypeDef structure 
is defined, it should be assigned to the USBD_STORAGE_fops pointer.

Example: 
USBD_STORAGE_cb_TypeDef *USBD_STORAGE_fops = &USBD_MICRO_SDIO_fops;

The standard inquiry data are given by the user inside the STORAGE_Inquirydata array. It 
should be defined as: 
const int8_t STORAGE_Inquirydata[] = {//36

/* LUN 0 */

0x00,

0x80,

0x02,

0x02,

(USBD_STD_INQUIRY_LENGTH - 5),

0x00,

0x00,

0x00,

'S', 'T', 'M', ' ', ' ', ' ', ' ', ' ', /* Manufacturer : 8 bytes */

'm', 'i', 'c', 'r', 'o', 'S', 'D', ' ', /* Product : 16 Bytes */

'F', 'l', 'a', 's', 'h', ' ', ' ', ' ',

'0', '.', '0' ,'1', /* Version : 4 Bytes */

};

Disk operation functions

         

Table 15. Functions

Functions Description

int8_t STORAGE_Init (uint8_t lun) Initializes the storage medium.

int8_t STORAGE_GetCapacity (uint8_t 
lun, uint32_t *block_num, uint16_t 
*block_size)

Returns the medium capacity and block size.



UM1021 USB device library

Doc ID 18153 Rev 3 45/107

6.7.3 Device firmware upgrade (DFU) class

The DFU core manages the DFU class V1.1 following the “Device Class Specification for 
Device Firmware Upgrade Version 1.1 Aug 5, 2004".

This core implements the following aspects of the specification:

● Device descriptor management

● Configuration descriptor management

● Enumeration as DFU device (in DFU mode only)

● Request management (supporting ST DFU sub-protocol)

● Memory request management (Download / Upload / Erase / Detach / GetState / 
GetStatus).

● DFU state machine implementation.

Note: ST DFU sub-protocol is compliant with DFU protocol. It uses sub-requests to manage 
memory addressing, command processing, specific memory operations (that is, memory 
erase, etc.)

As required by the DFU specification, only endpoint 0 is used in this application.

Other endpoints and functions may be added to the application (that is, HID, etc.).

These aspects may be enriched or modified for a specific user application.

This driver does not implement the following aspects of the specification (but it is possible to 
manage these features with some modifications on this driver):

● Manifestation Tolerant mode

Device firmware upgrade (DFU) class implementation

The DFU transactions are based on Endpoint 0 (control endpoint) transfer. All requests and 
status control are sent / received through this endpoint.

The DFU state machine is based on the following states:

int8_t  STORAGE_IsReady (uint8_t 
lun)

Checks whether the medium is ready.

int8_t  STORAGE_IsWriteProtected 
(uint8_t lun)

Checks whether the medium is write-protected.

int8_t STORAGE_Read (uint8_t lun, 

uint8_t *buf, uint32_t blk_addr,                       

uint16_t blk_len)

Reads data from the medium:
– blk_address is given in sector unit

– blk_len is the number of the sector to be 
processed.

int8_t STORAGE_Write (uint8_t lun, 

uint8_t *buf, uint32_t blk_addr,

uint16_t blk_len)

Writes data to the medium:
– blk_address is given in sector unit

– blk_len is the number of the sector to be 
processed.

int8_t STORAGE_GetMaxLun (void) Returns the number of supported logical units.

Table 15. Functions (continued)

Functions Description



USB device library UM1021

46/107 Doc ID 18153 Rev 3

         

The allowed state transitions are described in the specification document.

Table 16. DFU states

State State code

appIDLE 0x00

appDETACH 0x01

dfuIDLE 0x02

dfuDNLOAD-SYNC 0x03

dfuDNBUSY 0x04

dfuDNLOAD-IDLE 0x05

dfuMANIFEST-SYNC 0x06

dfuMANIFEST 0x07

dfuMANIFEST-WAIT-RESET 0x08

dfuUPLOAD-IDLE 0x09

dfuERROR 0x0A



UM1021 USB device library

Doc ID 18153 Rev 3 47/107

Figure 12. DFU Interface state transitions diagram

To protect the application from spurious access before initialization, the initial state of the 
DFU core (after startup) is dfuERROR. Then, the host has to clear this state (by sending a 
DFU_CLRSTATE request) before generating any other request.

The DFU core manages all supported requests.



USB device library UM1021

48/107 Doc ID 18153 Rev 3

         

Each transfer to the control endpoint can be considered into two main categories:

● Data transfers: These transfers are used to:

– Get some data from the device (DFU_GETSTATUS, DFU_GETSTATE and 
DFU_UPLOAD).

– Or, to send data to the device (DFU_DNLOAD).

● No-Data transfers: These transfers are used to send control requests from host to 
device (DFU_CLRSTATUS, DFU_ABORT and DFU_DETACH).

Device firmware upgrade (DFU) core files

usbd_dfu_core (.c, .h)

This driver is the main DFU core. It allows the management of all DFU requests and state 
machine. It does not directly deal with memory media (managed by lower layer drivers).

         

Table 17. Supported requests

Request Code Details

DFU_DETACH 0x00
When bit 3 in bmAttributes (bit WillDetach) is set, the 
device generates a detach-attach sequence on the bus 
when it receives this request.

DFU_DNLOAD 0x01
The firmware image is downloaded via the control-write 
transfers initiated by the DFU_DNLOAD class specific 
request.

DFU_UPLOAD 0x02
The purpose of the upload is to provide the capability of 
retrieving and archiving a device firmware.

DFU_GETSTATUS 0x03
The host employs the DFU_GETSTATUS request to facilitate 
synchronization with the device.

DFU_CLRSTATUS 0x04
Upon receipt of DFU_CLRSTATUS, the device sets a status 
of OK and transitions to the dfuIDLE state.

DFU_GETSTATE 0x05 This request solicits a report about the state of the device.

DFU_ABORT 0x06
The DFU_ABORT request enables the host to exit from 
certain states and to return to the DFU_IDLE state.

Table 18. usbd_dfu_core (.c, .h) files

Functions Description

static uint8_t  usbd_dfu_Init (void  
*pdev, uint8_t cfgidx)

Initializes the DFU interface.

static uint8_t  usbd_dfu_DeInit 
(void  *pdev, uint8_t cfgidx)

De-initializes the DFU layer.

static uint8_t  usbd_dfu_Setup (void  
*pdev, USB_SETUP_REQ *req)

Handles the DFU request parsing.

static uint8_t  EP0_TxSent (void  
*pdev)

Handles the DFU control endpoint data IN stage.

static uint8_t  EP0_RxReady (void  
*pdev)

Handles the DFU control endpoint data OUT 
stage.



UM1021 USB device library

Doc ID 18153 Rev 3 49/107

usbd_dfu_mal (.c, .h):

This driver is the entry point for the memory low layer access. It allows the parsing of the 
memory control/access requests through the available memories (that is, internal Flash, 
OTP, etc.). Depending on the address parameter, it dispatches the control/access request to 
the relative memory driver (or returns error code if the address is not supported).

         

static uint8_t* Get_USRStringDesc 
(void *pdev, uint8_t idx)

Manages the transfer of memory interfaces string 
descriptors.

static void DFU_Req_DETACH    (void 
*pdev, USB_SETUP_REQ *req)

Handles the DFU DETACH request.

static void DFU_Req_DNLOAD    (void 
*pdev, USB_SETUP_REQ *req)

Handles the DFU DNLOAD request.

static void DFU_Req_UPLOAD    (void 
*pdev, USB_SETUP_REQ *req)

Handles the DFU UPLOAD request.

static void DFU_Req_GETSTATUS (void 
*pdev)

Handles the DFU GETSTATUS request.

static void DFU_Req_CLRSTATUS (void 
*pdev)

Handles the DFU CLRSTATUS request.

static void DFU_Req_GETSTATE  (void 
*pdev)

Handles the DFU GETSTATE request.

static void DFU_Req_ABORT     (void 
*pdev)

Handles the DFU ABORT request.

static void DFU_LeaveDFUMode  (void 
*pdev)

Handles the sub-protocol DFU leave DFU mode 
request (leaves DFU mode and resets device to 
jump to user loaded code).

Table 19. usbd_dfu_mal (.c, .h) files

Functions Description

uint16_t MAL_Init (void)
Calls memory interface initialization functions 
supported by the low layer.

uint16_t MAL_DeInit (void)
Calls memory interface de-initialization functions 
supported by the low layer.

uint16_t MAL_Erase (uint32_t 
SectorAddress)

Calls the memory interface Erase functions 
supported by the low layer (if Erase is not 
supported, this function has no effect).

uint16_t MAL_Write (uint32_t 
SectorAddress, uint32_t DataLength)

Calls memory interface Write functions supported 
by the low layer.

uint8_t *MAL_Read  (uint32_t 
SectorAddress, uint32_t DataLength)

Calls the memory interface Read functions 
supported by the low layer.

Table 18. usbd_dfu_core (.c, .h) files (continued)

Functions Description



USB device library UM1021

50/107 Doc ID 18153 Rev 3

The low layer memory interfaces are managed through their respective driver structure:
typedef struct _DFU_MAL_PROP

{

const uint8_t* pStrDesc;

uint16_t (*pMAL_Init) (void);

uint16_t (*pMAL_DeInit) (void);

uint16_t (*pMAL_Erase) (uint32_t Add);

uint16_t (*pMAL_Write) (uint32_t Add, uint32_t Len);

uint8_t *(*pMAL_Read) (uint32_t Add, uint32_t Len);

uint16_t (*pMAL_CheckAdd) (uint32_t Add);

const uint32_t EraseTiming;

const uint32_t WriteTiming;

}

DFU_MAL_Prop_TypeDef;

Each memory interface driver should provide a structure pointer of type 
DFU_MAL_Prop_TypeDef. The functions and constants pointed by this structure are listed 
in the following sections.

If a functionality is not supported by a given memory interface, the relative field is set as 
NULL value.

usbd_xxxx_if (.c, .h): (i.e. usbd_flash_if (.c,.h))

This is the low layer driver managing the memory interface. Each memory interface should 
be managed by a separate low level driver (that is, usbd_flash_if.c/.h, usbd_otp_if.c/.h).

The library provides two default memory drivers for internal Flash memory 
(usbd_flash_if.c/.h) and for OTP memory (usbd_otp_if.c/.h). But you can add other 
memories using the provided template file (usbd_template_if.c/.h).

This driver provides the structure pointer:

extern DFU_MAL_Prop_TypeDef DFU_Flash_cb;
extern DFU_MAL_Prop_TypeDef DFU_OTP_cb;

uint16_t MAL_GetStatus(uint32_t 
SectorAddress ,uint8_t Cmd, uint8_t 
*buffer)

Returns the low layer memory interface status.

static uint8_t  MAL_CheckAdd  
(uint32_t Add)

Checks which memory interface supports the 
current address (returns error code if the address 
is not supported).

Table 19. usbd_dfu_mal (.c, .h) files (continued)

Functions Description



UM1021 USB device library

Doc ID 18153 Rev 3 51/107

         

How to use the driver:

● Using the file usbd_conf.h, you can configure:

– The number of media (memories) to be supported (define MAX_USED_MEDIA).

– The device string descriptors.

– The application default address (where the image code should be loaded): define 
APP_DEFAULT_ADD.

● Call usbd_dfu_Init() function to initialize all memory interfaces and DFU state 
machine.

● All control/request operations are performed through control endpoint 0, through the 
functions: usbd_dfu_Setup() and EP0_TxSent(). These functions can be used to 
call each memory interface callback (read/write/erase/get state...) depending on the 
generated DFU requests. No user action is required for these operations.

● To close the communication, call the usbd_dfu_DeInit() function.

Note: When the DFU application starts, the default DFU state is DFU_ERROR. This state is set to 
protect the application from spurious operations before having a correct configuration.

How to add a new memory interface:

● Use the file usbd_mem_if_template.c as reference (modify file name, fill functions 
allowing to read/write/erase/get status and the mean timings for write and erase 
operations in DFU_Mem_cb structure). If a functionality is not supported (i.e. Erase), fill 
the relative field in the DFU_MAL_Prop_TypeDef structure.

Table 20. usbd_flash_if (.c,.h) files

Functions Description

const uint8_t* pStrDesc

Pointer to the memory interface descriptor that allows the 
host to get memory interface organization (name, size, 
number of sectors/pages, size of sectors/pages, read/write 
rights).

uint16_t (*pMAL_Init) (void) Handles the memory interface initialization.

uint16_t (*pMAL_DeInit) 
(void)

Handles the memory interface de-initialization.

uint16_t (*pMAL_Erase) 
(uint32_t Add)

Handles the block erase on the memory interface.

uint16_t (*pMAL_Write) 
(uint32_t Add, uint32_t Len)

Handles the data writing to the memory interface.

uint8_t  *(*pMAL_Read) 
(uint32_t Add, uint32_t Len)

Handles the data reading from the memory interface.

uint16_t (*pMAL_CheckAdd) 
(uint32_t Add)

Returns MAL_OK result if the address is in the memory 
range.

const uint32_t EraseTiming
Mean time for erasing a memory block (sector/page…). It is 
possible to set this timing value to the maximum value 
allowed by the memory.

const uint32_t WriteTiming
Mean time for writing a memory block (sector/page). It is 
possible to set this timing value to the maximum value 
allowed by the memory.



USB device library UM1021

52/107 Doc ID 18153 Rev 3

● Configure the new memory string descriptor allowing to determine the memory size, 
number of sectors, and possibilities of read/write/erase operations on each group of 
sectors (MEM_IF_STRING in usbd_mem_if_template.h).

● Configure the start and end addresses of the memory using define MEM_START_ADD 
and MEM_START_ADD in file usbd_mem_if_template.h.

● Update the number of memory interfaces in usbd_conf.h file (define 
MAX_USED_MEDIA)

● Update the file usbd_dfu_mal.c by: 

– Including the new memory header file.

– Adding the new memory callback structure in “tMALTab” table.

– Adding the pointer to the new memory string descriptor in “usbd_dfu_StringDesc” 
table. 

Note: It is advised to modify the names of defines/variable/files/structures in 
usbd_mem_if_template.c/.h files for each new memory interface. 

In High speed mode, it is not possible to use DMA for writing/reading to/from Flash/OTP 
memories. In this case, an intermediate buffer is used to interface between memory and 
DMA controller. This may result in performance degradation for transfers relative to these 
memories in High speed mode. It is advised to disable DMA mode in this case (comment   
USB_OTG_HS_INTERNAL_DMA_ENABLED define in file usb_conf.h).

6.7.4 Audio class

This driver manages the Audio Class 1.0 following the “USB Device Class Definition for 
Audio Devices V1.0 Mar 18, 98".

This driver implements the following aspects of the specification:

● Device descriptor management

● Configuration descriptor management

● Standard AC Interface Descriptor management

● 1 Audio Streaming Interface (with single channel, PCM, Stereo mode)

● 1 Audio Streaming Endpoint

● 1 Audio Terminal Input (1 channel)

● Audio Class-Specific AC Interfaces

● Audio Class-Specific AS Interfaces

● Audio Control Requests: only SET_CUR and GET_CUR requests are supported (for 
Mute)

● Audio Feature Unit (limited to Mute control)

● Audio Synchronization type: Asynchronous

● Single fixed audio sampling rate (configurable in usbd_conf.h file)

Note: The Audio Class 1.0 is based on USB Specification 1.0 and thus supports only Low and Full 
speed modes and does not allow High Speed transfers. Please refer to “USB Device Class 
Definition for Audio Devices V1.0 Mar 18, 98" for more details.

These aspects may be enriched or modified for a specific user application.

This driver does not implement the following aspects of the specification (but it is possible to 
manage these features with some modifications on this driver):

● Audio Control Endpoint management



UM1021 USB device library

Doc ID 18153 Rev 3 53/107

● Audio Control requests other than SET_CUR and GET_CUR

● Abstraction layer for Audio Control requests (only mute functionality is managed)

● Audio Synchronization type: Adaptive

● Audio Compression modules and interfaces

● MIDI interfaces and modules

● Mixer/Selector/Processing/Extension Units (featured unit is limited to Mute control)

● Any other application-specific modules

● Multiple and Variable audio sampling rates

● Audio Out Streaming Endpoint/Interface (microphone)

Audio class implementation

The Audio transfers are based on isochronous endpoint transactions. Audio control requests 
are also managed through control endpoint (endpoint 0).

In each frame, an audio data packet is transferred and must be consumed during this frame 
(before the next frame). The audio quality depends on the synchronization between data 
transfer and data consumption. This driver implements simple mechanism of 
synchronization relying on accuracy of the delivered I2S clock. At each start of frame, the 
driver checks if the consumption of the previous packet has been correctly performed and 
aborts it if it is still ongoing. To prevent any data overwrite, two main protections are used:

● Using DMA for data transfer between USB buffer and output device registers (I2S).

● Using multi-buffers to store data received from USB.

Based on this mechanism, if the clock accuracy or the consumption rates are not high 
enough, it will result in a bad audio quality.

This mechanism may be enhanced by implementing more flexible audio flow controls like 
USB feedback mode, dynamic audio clock correction or audio clock generation/control using 
SOF event.

The driver also supports basic Audio Control requests. To keep the driver simple, only two 
requests have been implemented. However, other requests can be supported by slightly 
modifying the audio core driver.

         

Table 21. Audio control requests

Request Supported Meaning

SET_CUR Yes
Sets Mute mode On or Off (can also be updated to set volume 
level…).

SET_MIN No NA

SET_MAX No NA

SET_RES No NA

SET_MEM No NA

GET_CUR Yes Gets Mute mode state (can also be updated to get volume level…).

GET_MIN No NA

GET_MAX No NA

GET_RES No NA

GET_MEM No NA



USB device library UM1021

54/107 Doc ID 18153 Rev 3

Audio core files

usbd_audio_core (.c, .h) 

This driver is the audio core. It manages audio data transfers and control requests. It does 
not directly deal with audio hardware (which is managed by lower layer drivers).

         

The low layer hardware interfaces are managed through their respective driver structure:
typedef struct _Audio_Fops

{

uint8_t (*Init) (uint32_t AudioFreq, uint32_t Volume, uint32_t options);

uint8_t (*DeInit) (uint32_t options);

uint8_t (*AudioCmd) (uint8_t* pbuf, uint32_t size, uint8_t cmd);

uint8_t (*VolumeCtl) (uint8_t vol);

uint8_t (*MuteCtl) (uint8_t cmd);

uint8_t (*PeriodicTC) (uint8_t cmd);

uint8_t (*GetState) (void);

}AUDIO_FOPS_TypeDef;

Each audio hardware interface driver should provide a structure pointer of type 
AUDIO_FOPS_TypeDef. The functions and constants pointed by this structure are listed in 
the following sections. If a functionality is not supported by a given memory interface, the 
relative field is set as NULL value.

Table 22. usbd_audio_core (.c, .h) files

Functions Description

static uint8_t  usbd_audio_Init       
(void  *pdev, uint8_t cfgidx)

Initializes the Audio interface.

static uint8_t  usbd_audio_DeInit     
(void  *pdev, uint8_t cfgidx)

De-initializes the Audio interface.

static uint8_t  usbd_audio_Setup      
(void  *pdev, USB_SETUP_REQ *req)

Handles the Audio control request parsing.

static uint8_t  
usbd_audio_EP0_RxReady(void *pdev)

Handles audio control requests data.

static uint8_t  usbd_audio_DataIn     
(void *pdev, uint8_t epnum)

Handles the Audio In data stage.

static uint8_t  usbd_audio_DataOut    
(void *pdev, uint8_t epnum)

Handles the Audio Out data stage.

static uint8_t  usbd_audio_SOF        
(void *pdev)

Handles the SOF event (data buffer update and 
synchronization).

static void 
AUDIO_Req_GetCurrent(void *pdev, 
USB_SETUP_REQ *req)

Handles the GET_CUR Audio control request.

static void 
AUDIO_Req_SetCurrent(void *pdev, 
USB_SETUP_REQ *req)

Handles the SET_CUR Audio control request.



UM1021 USB device library

Doc ID 18153 Rev 3 55/107

usbd_audio_xxx_if (.c, .h): (i.e. usbd_audio_out_if (.c, .h))

This driver manages the low layer audio hardware. usbd_audio_out_if.c/.h driver manages 
the Audio Out interface (from USB to audio speaker/headphone). It calls lower layer codec 
driver (i.e. stm322xg_usb_audio_codec.c/.h) for basic audio operations (play/pause/volume 
control...).

This driver provides the structure pointer:
extern AUDIO_FOPS_TypeDef AUDIO_OUT_fops;

         

The Audio player state is managed through the following states:

         

How to use this driver

This driver uses an abstraction layer for hardware driver (i.e. HW Codec, I2S interface, I2C 
control interface...). This abstraction is performed through a lower layer (i.e. 
usbd_audio_out_if.c) which you can modify depending on the hardware available for your 
application.

To use this driver:

● Through the file usbd_conf.h, you can configure:

Table 23. usbd_audio_xxx_if (.c, .h) files

Functions Description

static uint8_t  Init         
(uint32_t  AudioFreq, uint32_t 
Volume, uint32_t options)

Initializes the audio interface.

static uint8_t  DeInit       
(uint32_t options)

De-initializes the audio interface and free used 
resources.

static uint8_t  AudioCmd     
(uint8_t* pbuf, uint32_t size, 
uint8_t cmd)

Handles audio player commands (play, pause…)

static uint8_t  VolumeCtl    (uint8_t 
vol)

Handles audio player volume control.

static uint8_t  MuteCtl      (uint8_t 
cmd)

Handles audio player mute state.

static uint8_t  PeriodicTC   
(uint8_t cmd)

Handles the end of current packet transfer (not 
needed for the current version of the driver).

static uint8_t  GetState     (void)
Returns the current state of the driver audio 
player (Playing/Paused/Error …).

Table 24. Audio player states

State Code Description

AUDIO_STATE_INACTIVE 0x00 Audio player is not initialized.

AUDIO_STATE_ACTIVE 0x01 Audio player is initialized and ready.

AUDIO_STATE_PLAYING 0x02 Audio player is currently playing.

AUDIO_STATE_PAUSED 0x03 Audio player is paused.

AUDIO_STATE_STOPPED 0x04 Audio player is stopped.

AUDIO_STATE_ERROR 0x05
Error occurred during initialization or while 
executing an audio command.



USB device library UM1021

56/107 Doc ID 18153 Rev 3

– The audio sampling rate (define USBD_AUDIO_FREQ)

– The default volume level (define DEFAULT_VOLUME)

– The endpoints to be used for each transfer (defines AUDIO_IN_EP and 
AUDIO_OUT_EP)

– The device string descriptors

● Call the function usbd_audio_Init() at startup to configure all necessary firmware 
and hardware components (application-specific hardware configuration functions are 
also called by this function). The hardware components are managed by a lower layer 
interface (i.e. usbd_audio_out_if.c) and can be modified by user depending on the 
application needs.

● The entire transfer is managed by the following functions (no need for user to call any 
function for out transfers):

– usbd_audio_SOF which synchronizes the low layer interface at each start of 
frame. For out transfers, at each SOF event, this function controls the low layer to 
stop the previous transfer if it is not stopped yet and start playing next sub-buffer. 
Each time the reading buffer (IsocOutRdPtr) is incremented.

– usbd_audio_DataIn() and usbd_audio_DataOut() which update the audio 
buffers with the received or transmitted data. For Out transfers, when data are 
received, they are directly copied into the audiobuffer and the write buffer 
(IsocOutWrPtr) is incremented.

● The Audio Control requests are managed by the functions usbd_audio_Setup() 
and usbd_audio_EP0_RxReady(). These functions route the Audio Control 
requests to the lower layer (i.e. usbd_audio_out_if.c). In the current version, only 
SET_CUR and GET_CUR requests are managed and are used for mute control only.

Audio known limitations

● If a low audio sampling rate is configured (define USBD_AUDIO_FREQ below 24 kHz) it 
may result in noise issue at pause/resume/stop operations. This is due to software 
timing tuning between stopping I2S clock and sending mute command to the external 
codec.

● Supported audio sampling rates are from: 96 kHz to 24 kHz (non-multiple of 1 kHz 
values like 11.025 kHz, 22.05 kHz or 44.1 kHz are not supported by this driver). For 
frequencies multiple of 1000 Hz, the Host will send integer number of bytes each frame 
(1 ms). When the frequency is not multiple of 1000Hz, the Host should send non 
integer number of bytes per frame. This is in fact managed by sending frames with 
different sizes (i.e. for 22.05 kHz, the Host will send 19 frames of 22 bytes and one 
frame of 23 bytes). This difference of sizes is not managed by the Audio core and the 
extra byte will always be ignored. It is advised to set a high and standard sampling rate 
in order to get best audio quality (i.e. 96 kHz or 48 kHz). Note that maximum allowed 
audio frequency is 96 kHz (this limitation is due to the codec used on the Evaluation 
board. The STM32 I2S cell enables reaching 192 kHz).

6.7.5 Communication device class (CDC)

This driver manages the “Universal Serial Bus Class Definitions for Communications 
Devices Revision 1.2 November 16, 2007" and the sub-protocol specification of “Universal 
Serial Bus Communications Class Subclass Specification for PSTN Devices Revision 1.2 
February 9, 2007".

This driver implements the following aspects of the specification:



UM1021 USB device library

Doc ID 18153 Rev 3 57/107

● Device descriptor management

● Configuration descriptor management

● Enumeration as CDC device with 2 data endpoints (IN and OUT) and 1 command 
endpoint (IN)

● Request management (as described in section 6.2 in specification)

● Abstract Control Model compliant

● Union Functional collection (using 1 IN endpoint for control)

● Data interface class

Note: For the Abstract Control Model, this core can only transmit the requests to the lower layer 
dispatcher (i.e. usbd_cdc_vcp.c/.h) which should manage each request and perform relative 
actions.

These aspects may be enriched or modified for a specific user application.

This driver does not implement the following aspects of the specification (but it is possible to 
manage these features with some modifications on this driver):

● Any class-specific aspect relative to communication classes should be managed by 
user application.

● All communication classes other than PSTN are not managed.

Communication

The CDC core uses two endpoint/transfer types:

● Bulk endpoints for data transfers (1 OUT endpoint and 1 IN endpoint)

● Interrupt endpoints for communication control (CDC requests; 1 IN endpoint)

Data transfers are managed differently for IN and OUT transfers:

Data IN transfer management (from device to host)

The data transfer is managed periodically depending on host request (the device specifies 
the interval between packet requests). For this reason, a circular static buffer is used for 
storing data sent by the device terminal (i.e. USART in the case of Virtual COM Port 
terminal). 

On a periodic interval (defined through CDC_IN_FRAME_INTERVAL in usbd_conf.h file) the 
driver checks if there are available data in the buffer. It sends them into successive packets 
to the host through data IN endpoint.

Data OUT transfer management (from host to device)

In general, the USB is much faster than the output terminal (i.e. the USART maximum 
bitrate is 115.2 Kbps while USB bitrate is 12 Mbps for Full speed mode and 480 Mbps in 
High speed mode). Consequently, before sending new packets, the host has to wait until the 
device has finished to process the data sent by host. Thus, there is no need for circular data 
buffer when a packet is received from host: the driver calls the lower layer OUT transfer 
function and waits until this function is completed before allowing new transfers on the OUT 
endpoint (meanwhile, OUT packets will be NACKed).

Command request management

In this driver, control endpoint (endpoint 0) is used to manage control requests. But a data 
interrupt endpoint may be used also for command management. If the request data size 
does not exceed 64 bytes, the endpoint 0 is sufficient to manage these requests.



USB device library UM1021

58/107 Doc ID 18153 Rev 3

The CDC driver does not manage command requests parsing. Instead, it calls the lower 
layer driver control management function with the request code, length and data buffer. 
Then this function should parse the requests and perform the required actions.

Communication device class (CDC) core files

usbd_cdc_core (.c, .h)

This driver is the CDC core. It manages CDC data transfers and control requests. It does not 
directly deal with CDC hardware (which is managed by lower layer drivers).

         

The low layer hardware interfaces are managed through their respective driver structure:
typedef struct _CDC_IF_PROP

{

uint16_t (*pIf_Init) (void);

uint16_t (*pIf_DeInit) (void);

uint16_t (*pIf_Ctrl) (uint32_t Cmd, uint8_t* Buf, uint32_t Len);

uint16_t (*pIf_DataTx) (uint8_t* Buf, uint32_t Len);

uint16_t (*pIf_DataRx) (uint8_t* Buf, uint32_t Len);

}

CDC_IF_Prop_TypeDef;

Each hardware interface driver should provide a structure pointer of type 
CDC_IF_Prop_TypeDef. The functions pointed by this structure are listed in the following 
sections.

If a functionality is not supported by a given memory interface, the relative field is set as 
NULL value.

Table 25. usbd_cdc_core (.c, .h) files

Functions Description

static uint8_t  usbd_cdc_Init        
(void  *pdev, uint8_t cfgidx)

Initializes the CDC interface.

static uint8_t  usbd_cdc_DeInit      
(void  *pdev, uint8_t cfgidx)

De-initializes the CDC interface.

static uint8_t  usbd_cdc_Setup       
(void  *pdev, USB_SETUP_REQ *req)

Handles the CDC control requests.

static uint8_t  usbd_cdc_EP0_RxReady  
(void *pdev)

Handles CDC control request data.

static uint8_t  usbd_cdc_DataIn      
(void *pdev, uint8_t epnum)

Handles the CDC IN data stage.

static uint8_t  usbd_cdc_DataOut     
(void *pdev, uint8_t epnum)

Handles the CDC Out data stage.

static uint8_t  usbd_cdc_SOF         
(void *pdev)

Handles the SOF event (data buffer update and 
synchronization).

static void Handle_USBAsynchXfer  
(void *pdev)

Handles the IN data buffer packaging.



UM1021 USB device library

Doc ID 18153 Rev 3 59/107

Note: In order to get the best performance, it is advised to calculate the values needed for the 
following parameters (all of them are configurable through defines in the usbd_conf.h file):

         

usbd_cdc_xxx_if (.c, .h): (i.e. usbd_cdc_vcp_if (.c, .h))

This driver can be part of the user application. It is not provided in the library, but a template 
can be used to build it and an example is provided for the USART interface. It manages the 
low layer CDC hardware. The usbd_cdc_xxx_if.c/.h driver manages the terminal interface 
configuration and communication (i.e. USART interface configuration and data 
send/receive). 

This driver provides the structure pointer:
extern CDC_IF_Prop_TypeDef APP_FOPS;

where APP_FOPS should be defined in the usbd_conf.h file as the low layer interface 
structure pointer. (i.e. “#define APP_FOPS VCP_fops” for using Virtual COM Port 
interface provided in the Virtual COM Port example).

         

In order to accelerate data management for IN transfers, the low layer driver 
(usbd_cdc_xxx_if.c/.h) should use two global variables exported from CDC core:

Table 26. Configurable CDC parameters

Define Parameter
Typical value

Full Speed High Speed

CDC_DATA_IN_PACKET_SIZE Size of each IN data packet 64 512

CDC_DATA_OUT_PACKET_SIZE Size of each OUT data packet 64 512

CDC_IN_FRAME_INTERVAL
Interval time between IN 
packets sending.

5 40

APP_RX_DATA_SIZE
Total size of circular temporary 
buffer for IN data transfer.

2048 2048

Table 27. usbd_cdc_xxx_if (.c, .h) files

Functions Description

uint16_t pIf_Init    (void) Initializes the low layer CDC interface.

uint16_t pIf_DeInit   (void) De-initializes the low layer CDC interface.

uint16_t pIf_Ctrl     (uint32_t Cmd, 
uint8_t* Buf, uint32_t Len)

Handles CDC control request parsing and 
execution.

uint16_t pIf_DataTx   (uint8_t* Buf, 
uint32_t Len)

Handles CDC data transmission from low layer 
terminal to USB host (IN transfers).

uint16_t pIf_DataRx   (uint8_t* Buf, 
uint32_t Len)

Handles CDC data reception from USB host to 
low layer terminal (OUT transfers).



USB device library UM1021

60/107 Doc ID 18153 Rev 3

         

How to use this driver

This driver uses an abstraction layer for hardware driver (i.e. USART control interface...). 
This abstraction is performed through a lower layer (i.e. usbd_cdc_vcp.c) which you can 
modify depending on the hardware available for your application.

To use this driver:

● Through the file usbd_conf.h you can configure:

– The Data IN and OUT and command packet sizes (defines 
CDC_DATA_IN_PACKET_SIZE, CDC_DATA_OUT_PACKET_SIZE, 
CDC_CMD_PACKET_SZE)

– The interval between IN packets (define CDC_IN_FRAME_INTERVAL)

– The size of the temporary circular buffer for IN data transfer (define 
APP_RX_DATA_SIZE).

– The device string descriptors.

● Call the function usbd_cdc_Init() at startup to configure all necessary firmware 
and hardware components (application-specific hardware configuration functions are 
called by this function as well). The hardware components are managed by a lower 
layer interface (i.e. usbd_cdc_vcp_if.c) and can be modified by user depending on the 
application needs.

● CDC IN and OUT data transfers are managed by two functions:

– APP_DataTx (i.e. VCP_dataTx) should be called by user application each time a 
data (or a certain number of data) is available to be sent to the USB Host from the 
hardware terminal.

– APP_DataRx (i.e. VCP_dataRx) is called by the CDC core each time a buffer is 
sent from the USB Host and should be transmitted to the hardware terminal. This 
function should exit only when all data in the buffer are sent (the CDC core then 
blocks all coming OUT packets until this function finishes processing the previous 
packet).

● CDC control requests should be handled by the function APP_Ctrl (i.e. VCP_Ctrl). 
This function is called each time a request is received from Host and all its relative data 
are available if any. This function should parse the request and perform the needed 
actions.

● To close the communication, call the function usbd_cdc_DeInit(). This closes the 
used endpoints and calls lower layer de-initialization functions.

Table 28. Variables used by usbd_cdc_xxx_if.c/.h

Variable Usage

extern uint8_t  APP_Rx_Buffer []
Writes CDC received data in this buffer. These data 
will be sent over USB IN endpoint in the CDC core 
functions.

extern uint32_t APP_Rx_ptr_in
Increments this pointer or rolls it back to start the 
address when writing received data in the buffer 
APP_Rx_Buffer.



UM1021 USB device library

Doc ID 18153 Rev 3 61/107

CDC known limitations

When using this driver with the OTG HS core, enabling DMA mode (define 
USB_OTG_HS_INTERNAL_DMA_ENABLED in usb_conf.h file) results in data being sent only 
by multiple of 4 bytes. This is due to the fact that USB DMA does not allow sending data 
from non word-aligned addresses. For this specific application, it is advised not to enable 
this option unless required.

6.7.6 Adding a custom class

To create a new custom class, the user has to add USBD_CustomClass_cb as described 
in Section 6.5: USB device class interface.
typedef struct _Device_cb

{

uint8_t  (*Init) (void *pdev , uint8_t cfgidx);

uint8_t  (*DeInit) (void *pdev , uint8_t cfgidx);

/* Control Endpoints*/

uint8_t  (*Setup) (void *pdev , USB_SETUP_REQ  *req);  

uint8_t  (*EP0_TxSent)   (void *pdev );    

uint8_t  (*EP0_RxReady)  (void *pdev );  

/* Class Specific Endpoints*/

uint8_t  (*DataIn)       (void *pdev , uint8_t epnum);   

uint8_t  (*DataOut)      (void *pdev , uint8_t epnum); 

uint8_t  (*SOF)          (void *pdev); 

uint8_t  (*IsoINIncomplete)  (void *pdev); 

uint8_t  (*IsoOUTIncomplete)  (void *pdev);   

uint8_t  *(*GetConfigDescriptor)( uint8_t speed ,
uint16_t *length); 

#ifdef USB_OTG_HS_CORE 

uint8_t  *(*GetOtherConfigDescriptor)( uint8_t speed ,
uint16_t *length);   

#endif

#ifdef USB_SUPPORT_USER_STRING_DESC 

uint8_t  *(*GetUsrStrDescriptor)( uint8_t speed ,
uint8_t index,  uint16_t *length);   

#endif  

  

} USBD_Class_cb_TypeDef;

In the DataIn and DataOut functions, the user can implement the internal protocol or state 
machine, while in the Setup; the class specific requests are to be implemented. The 
configuration descriptor is to be added as an array and passed to the USB device library, 
through the GetConfigDescriptor function which should return a pointer to the USB 
configuration descriptor and its length.



USB device library UM1021

62/107 Doc ID 18153 Rev 3

Additional functions could be added as the IsoINIncomplete and IsoOUTIncomplete 
could be eventually used to handle incomplete isochronous transfers (for more information, 
refer to the USB audio device example).  EP0_TxSent and EP0_RxReady could be 
eventually used when the application needs to handle events occurring before the Zero 
Length Packets (see the DFU example).

6.8 Application layer description

Figure 13. Folder organization

For each example, the source folder is split into src (sources) and inc (includes).

The sources directory includes the following files:

● app.c: contains the main function

● stm32fxxx_it.c: contains the system interrupt handlers

● system_stm32fxxx.c: system clock configuration file for STM32Fxxx devices.

● usb_bsp.c: contains the function implementation (declared in the usb_bsp.h in the USB 
OTG low level driver) to initialize the GPIO for the core, time delay methods and 
interrupts enabling/disabling process.

● usbd_usr: contains the function implementation (declared in the usbd_usr.h in the USB 
library) to handle the library events from user layer (event messages).

● usbd_desc.c: This file is provided within USB Device examples and implements 
callback bodies. This file offers a set of functions used to change the device and string 
descriptors at application runtime.

The includes directory contains the following files:

● stm32fxxx_it.h: header file of the stm32fxxx_it.c file

● usb_conf.h: configuration files for the USB OTG low level driver.

● usbd_conf.h: configuration files for the USB device library.



UM1021 USB device library

Doc ID 18153 Rev 3 63/107

Note: When using the USB OTG Full speed core, the user should use the CN8 connector on the 
STM322xG-EVAL and STM324xG-EVAL or the CN2 connector when the STM3210C-EVAL 
is used.

When using the USB OTG High speed core, the user should use the CN9 connector on the 
STM322xG-EVAL and STM324xG-EVAL boards.

6.9 Starting the USB device library
Since the USB Library can handle multi-core instances, the user must first define the core 
device handles.

Figure 14. Example of the define for core device handles

The USB Library is built as an interrupt model; from application layer the user has only to 
call the USBD_Init () function and pass the user and class callbacks. The USB internal 
process is handled internally by the USB library and triggered by the USB interrupts from 
the USB driver.

Figure 15. USBD_Init () function example



USB device library UM1021

64/107 Doc ID 18153 Rev 3

6.10 USB device examples
Each project for an example based on a class is given with five configurations, as follows 
(exception made for USB device dual core example).

1. STM322xG-EVAL_USBD-HS: High-speed example on the STM322xG-EVAL board 
working with USB OTG HS core and the ULPI PHY

2. STM322xG-EVAL_USBD-FS: Full-speed example on the STM322xG-EVAL board 
working with USB OTG FS core and the embedded FS PHY

3. STM324xG-EVAL_USBD-HS: High-speed example on the STM324xG-EVAL board 
working with USB OTG HS core and the ULPI PHY

4. STM324xG-EVAL_USBD-FS: Full-speed example on the STM324xG-EVAL board 
working with USB OTG FS core and the embedded FS PHY

5. STM3210C-EVAL_USBD-FS: Full-speed example on the STM3210C-EVAL board 
working with USB OTG FS core and the embedded FS PHY.

For the High speed examples, the following features are selected in the usb_config.h file:

● USB_OTG_HS_ULPI_PHY_ENABLED:  ULPI Phy is used.

● USB_OTG_HS_INTERNAL_DMA_ENABLED: internal DMA is used.

● USB_OTG_HS_DEDICATED_EP1_ENABLED: endpoint interrupts relative to the class 
are independent from the global USB OTG interrupt.

For the HID example, the Low power mode is enabled, allowing entering the core into Low 
power mode by the USB Suspend event, the core wakes up when the USB wakeup event is 
received on the USB. The HID example supports also the remote wakeup feature allowing 
the device to wake up the host by pressing the [Key] button on the evaluation board.

Note: The USB device examples are using the lcd_log.c module to redirect the Library and User 
messages on the screen. Depending on the LCD cache depth used to scroll forward and 
backward within the messages, the application footprints are impacted. With bigger LCD 
cache depth, the RAM footprint is consequently increased. To prevent this additional RAM 
footprint, the user can redirect the Library and User messages on another terminal 
(HyperTerminal or LCD using the native display functions).

Library and user messages are located in the user callbacks in the application layer. They 
are not mandatory and they are used for information and debug purpose only. They can be 
modified or even removed.

6.10.1 USB mass storage device example

The Mass storage example uses the microSD Flash embedded in the STM322xG-EVAL, 
STM324xG-EVAL and STM3210C-EVAL evaluation boards as media for data storage.

In addition to the source files mentioned above, additional files for the disk access were 
added to handle the microSD driver and microSD access operations.

The mass storage example works in High and Full speed modes and has the following USB 
device information (usbd_desc.c). 

#define USBD_VID                      0x0483

#define USBD_PID                      0x5720

#define USBD_LANGID_STRING            0x409

#define USBD_MANUFACTURER_STRING      "STMicroelectronics"



UM1021 USB device library

Doc ID 18153 Rev 3 65/107

#define USBD_PRODUCT_HS_STRING        "Mass Storage in HS Mode"

#define USBD_SERIALNUMBER_HS_STRING   "00000000001A"

      

#define USBD_PRODUCT_FS_STRING        "Mass Storage in FS Mode"

      #define USBD_SERIALNUMBER_FS_STRING   "00000000001B"

      

#define USBD_CONFIGURATION_HS_STRING  "MSC Config"

#define USBD_INTERFACE_HS_STRING      "MSC Interface"

      

#define USBD_CONFIGURATION_FS_STRING  "MSC Config"

#define USBD_INTERFACE_FS_STRING      "MSC Interface"

At power on, the LCD displays the following messages.

Figure 16. Power-on display message

When the USB cable is plugged in, the LCD shows the following messages.

Figure 17. Cable connected display message

6.10.2 USB human interface device example

The HID example uses the joystick embedded in the STM322xG-EVAL, STM324xG-EVAL 
or STM3210C-EVAL evaluation boards. 

The HID example works in High and Full speed modes and provides the following USB 
device information (usbd_desc.c).

MS18187V1

> USB device Library started.
> Device in suspend mode.
> MSC Interface started.

INFO: Single Lun configuration
INFO: microSD is used

USB OTG MSC Device

USB Device Library vx.x.x          [HS]

Mass storage device
configured and traffic
has started with the host.

Library version and 
Current device speed

}

}

MS18188V1

> USB device Library started.
> Device in suspend mode.

INFO: Single Lun configuration
INFO: microSD is used

USB OTG MSC Device

USB Device Library vx.x.x



USB device library UM1021

66/107 Doc ID 18153 Rev 3

#define USBD_VID                      0x0483

      #define USBD_PID                      0x5710

      #define USBD_LANGID_STRING            0x409

      #define USBD_MANUFACTURER_STRING      "STMicroelectronics"

      #define USBD_PRODUCT_HS_STRING        "Joystick in HS mode"

      #define USBD_SERIALNUMBER_HS_STRING   "00000000011B"

      #define USBD_PRODUCT_FS_STRING        "Joystick in FS Mode"

      #define USBD_SERIALNUMBER_FS_STRING   "00000000011C"

      #define USBD_CONFIGURATION_HS_STRING  "HID Config"

      #define USBD_INTERFACE_HS_STRING      "HID Interface"

      #define USBD_CONFIGURATION_FS_STRING  "HID Config"

      #define USBD_INTERFACE_FS_STRING      "HID Interface"

At power on, the LCD displays the following message.

Figure 18. USB HID power-on display message

When the USB cable is plugged in, the LCD displays the following messages.

Figure 19. USB HID cable connected display message

MS18189V1

> USB device Library started.
> Device in suspend mode.

[Key] : Remote Wakeup
[Joystick] : mouse emulation

USB OTG HID Device

USB Device Library vx.x.x

MS18190V1

> USB device Library started.
> Device in suspend mode.
> HID Interface started.

[Key] : Remote Wakeup
[Joystick] : mouse emulation

USB OTG HID Device

USB Device Library vx.x.x          [HS]

HID device
configured and traffic
has started with the host.

Library version and 
Current device speed

}

}



UM1021 USB device library

Doc ID 18153 Rev 3 67/107

The user can use the embedded joystick on the evaluation board to move the mouse pointer 
on the host screen.

6.10.3 Dual core USB device example

The Dual core USB device example integrates the two mass storage and HID example 
described above in same project and uses the multi core support feature. The Mass storage 
device is connected to the High speed USB connector while the HID is connected to the Full 
Speed connector. Note that project comes with only two configurations for the STM322xG-
EVAL and STM324xG-EVAL boards.

Figure 20. Dual core USB device example



USB device library UM1021

68/107 Doc ID 18153 Rev 3

For this project, two USB device instances are declared and the USBD_Init() function is 
called twice to initialize each USB OTG core and to load the class callbacks for each 
instance.

At power on, the LCD displays the following messages.

Figure 21. USB dual device power-on display message

When the USB cable is plugged in, the LCD shows the following messages:

Figure 22. USB dual device cable connected display message

6.10.4 USB device firmware upgrade example

The DFU example allows a device firmware upgrade using the DFU drivers provided by ST 
(ST DFUse and ST DFU Tester) available for download from www.st.com.

The supported memories for this example are:

● Internal Flash memory for STM32F105/7, STM32F2xx and STM32F4xx devices

● OTP memory for STM32F2xx and STM32F4xx devices.

The DFU example works in High and Full speed modes and has the following USB device 
information.
#define USBD_VID                        0x0483

#define USBD_PID                        0xDF11

#define USBD_LANGID_STRING              0x409

#define USBD_MANUFACTURER_STRING        "STMicroelectronics"

#define USBD_PRODUCT_HS_STRING          "DFU in HS mode"

MS18191V1

> USB device Library started.
> HID Device in suspend mode.
> MSC Device in suspend mode.

MSC running in High speed mode.
HID running in Full speed mode.

USB Dual Devices

USB Device Library vx.x.x

MS18192V1

> USB device Library started.
> HID Device in suspend mode.
> MSC Device in suspend mode.
> HID Interface started.
> MSC interface started.

MSC running in High speed mode.
HID running in Full speed mode.

USB Dual Devices

USB Device Library vx.x.x



UM1021 USB device library

Doc ID 18153 Rev 3 69/107

#define USBD_SERIALNUMBER_HS_STRING     "00000000010B"

#define USBD_PRODUCT_FS_STRING          "DFU in FS Mode"

#define USBD_SERIALNUMBER_FS_STRING     "00000000010C"

#define USBD_CONFIGURATION_HS_STRING    "DFU Config"

#define USBD_INTERFACE_HS_STRING        "DFU Interface"

#define USBD_CONFIGURATION_FS_STRING    "DFU Config"

#define USBD_INTERFACE_FS_STRING        "DFU Interface"

At power on, the LCD displays the following messages.

Figure 23. USB device firmware upgrade power-on display message

When the USB cable is plugged in, the LCD displays the following messages.

Figure 24. USB device firmware upgrade cable connected display message

When the DFU application starts, the default state is DFU ERROR in order to prevent 
spurious access to the application before it is correctly configured. Once the application is 
running, the state (displayed in the footer on the LCD) is updated depending on the current 
operation.

After downloading a DFU image into the internal Flash and exiting from DFU mode (using 
command “Leave DFU mode” of the ST DFU applet), a hardware reset may be performed 
(using RESET button on the evaluation board). After reset, the DFU example jumps and 
executes the loaded user application in the internal Flash memory.

MS18193V1

> USB device Library started.
> Device in suspend mode.

>State: Application Idle
[Key] : Enter DFU mode after reset

USB OTG DFU Device

USB Device Library vx.x.x

MS18194V1

> USB device Library started.
> Device in suspend mode.
> DFU Interface started.

>State : DFU ERROR
[Key] : Enter DFU mode after reset

USB OTG DFU Device

USB Device Library vx.x.x          [HS]

DFU device
configured and traffic
has started with the host.

Library version and 
Current device speed

}

}



USB device library UM1021

70/107 Doc ID 18153 Rev 3

To go back to the DFU example, you have to reset the device (using RESET button or 
software reset) while the KEY button is pushed. If the KEY button is released after reset, the 
example jumps to user image application loaded in the internal Flash.

Note: In High speed mode, when DMA mode is enabled (define 
USB_OTG_HS_INTERNAL_DMA_ENABLED in file usb_conf.h), the DMA cannot directly 
access (read/write) the internal Flash memory and the OTP memory (due to STM32F2xx 
and STM32F4xx product architecture). In this case, an intermediate buffer is used to store 
data before loading them to the memory or before sending them through DMA to the USB 
interface. This leads to an overall performance equivalent to Full Speed mode. However, if 
another memory is used (i.e. NOR Flash), it is possible to fully use DMA mode and get a 
better performance.

6.10.5 USB virtual com port (VCP) device example

The VCP example illustrates an implementation of the CDC class following the PSTN sub-
protocol. The VCP example allows the STM32 device to behave as a USB-to-RS232 bridge. 

● On one side, the STM32 communicates with host (PC) through USB interface in Device 
mode. 

● On the other side, the STM32 communicates with other devices (same host, other host, 
other devices…) through the USART interface (RS232).

The support of the VCP interface is managed through the ST Virtual Com Port driver 
available for download from www.st.com.

This example can be customized to communicate with interfaces other than USART.

The VCP example works in High and Full speed modes and has the following USB device 
information.
#define USBD_VID                        0x0483

#define USBD_PID                        0x5740

#define USBD_LANGID_STRING              0x409

#define USBD_MANUFACTURER_STRING        "STMicroelectronics"

#define USBD_PRODUCT_HS_STRING          "STM32 Virtual ComPort in HS mode"

#define USBD_SERIALNUMBER_HS_STRING     "00000000050B"

#define USBD_PRODUCT_FS_STRING          "STM32 Virtual ComPort  in FS Mode"

#define USBD_SERIALNUMBER_FS_STRING     "00000000050C"

#define USBD_CONFIGURATION_HS_STRING    "VCP Config"

#define USBD_INTERFACE_HS_STRING        "VCP Interface"

#define USBD_CONFIGURATION_FS_STRING    "VCP Config"

#define USBD_INTERFACE_FS_STRING        "VCP Interface"

At power on, the LCD displays the following messages.



UM1021 USB device library

Doc ID 18153 Rev 3 71/107

Figure 25. USB virtual com port power-on display message

When the USB cable is plugged in, the LCD displays the following messages.

Figure 26. USB virtual com port cable connected display message

When the VCP application starts, the USB device is enumerated as serial communication 
port and can be configured in the same way (baudrate, data format, parity, stop bit 
length…).

To test this example, you can use one of the following configurations:

● Configuration 1: Connect USB cable to host and USART (RS232) to a different host 
(PC or other device) or to the same host. In this case, you can open two hyperterminal-
like terminals to send/receive data to/from host to/from device.

● Configuration 2: Connect USB cable to Host and connect USART TX pin to USART 
RX pin on the evaluation board (Loopback mode). In this case, you can open one 
terminal (relative to USB com port or USART com port) and all data sent from this 
terminal will be received by the same terminal in loopback mode. This mode is useful 
for test and performance measurements.

MS18195V1

> USB device Library started.
> Device in suspend mode.

USB OTG VCP Device

USB Device Library vx.x.x

MS18196V1

> USB device Library started.
> Device in suspend mode.
> VCP Interface started.

USB OTG VCP Device

USB Device Library vx.x.x          [HS]

VCP device
configured and traffic
has started with the host.

Library version and 
Current device speed

}

}



USB device library UM1021

72/107 Doc ID 18153 Rev 3

Figure 27. Configuration 1a: Two different hosts for USB and USART

Figure 28. Configuration 1b: One single Host for USB and USART

Figure 29. Configuration 2: Loopback mode (for test purposes)



UM1021 USB device library

Doc ID 18153 Rev 3 73/107

6.10.6 USB audio device example

The Audio device example allows device to communicate with host (PC) as USB Speaker 
using isochronous pipe for audio data transfer along with some control commands (i.e. 
Mute).

The Audio device is natively supported by most of operating systems (there is no need for 
specific driver setup).

The Audio device example works in full speed mode only (as specified in the USB Device 
Class Definition for Audio Devices V1.0 Mar 18, 98) and has the following USB device 
information. 
#define USBD_VID                        0x0483

       #ifdef STM32F2XX

         #define USBD_PID                     0x5730

       #else

         #define USBD_PID                     0x5730

       #endif /* STM32F2XX */

      #define USBD_LANGID_STRING              0x409

      #define USBD_MANUFACTURER_STRING        "STMicroelectronics"

      #define USBD_PRODUCT_FS_STRING          "STM32 AUDIO Streaming in FS 
Mode"

      #define USBD_SERIALNUMBER_FS_STRING     "00000000034E"

      #define USBD_CONFIGURATION_FS_STRING    "AUDIO Config"

      #define USBD_INTERFACE_FS_STRING        "AUDIO Interface"

At power on, the LCD displays the following messages.

Figure 30. USB audio device power-on display message

When the USB cable is plugged in, the LCD displays the following messages.

MS18197V1

> USB device Library started.
> Device in suspend mode.

>State: Application Idle
[Key] : Switch Headphone/Speaker

USB OTG AUDIO Device

USB Device Library vx.x.x



USB device library UM1021

74/107 Doc ID 18153 Rev 3

Figure 31. USB audio device cable connected display message

When the Application is ready for audio streaming, the state footer (“>State: …”) indicates 
“Application Active” state. When an audio file is being played the state changes to 
“PLAYING” and when the audio file is paused or stopped, the state updates to “PAUSED”.

The last line of the footer (on the LCD screen) indicates the current output state (Headphone 
or Speaker). 

For STM32F2xx and STM32F4xx devices, the Headphone is selected as output by default. 
When pushing Key button the output is switched to Speaker (or to Headphone if the current 
output is the Speaker).

For STM32F105/7 devices, the default state is Automatic detection (when the Headphone is 
plugged in it is used as output, and when it is unplugged, output automatically switches to 
Speaker). When pushing Key button, the automatic detection is disabled and only the output 
set by the Key command is configured (Headphone or Speaker).

6.10.7 Known limitations

● If a low audio sampling rate is configured (define USBD_AUDIO_FREQ below 24 kHz) it 
may result in noise issue at pause/resume/stop operations. This is due to software 
timings tuning between stopping I2S clock and sending mute command to the external 
codec.

● Supported audio sampling rates are from: 96 kHz to 24 kHz (non-multiple of 1 kHz 
values like 11.025 kHz, 22.05 kHz or 44.1 kHz are not supported by this driver). For 
frequencies multiple of 1000 Hz, the Host will send integer number of bytes each frame 
(1 ms). When the frequency is not multiple of 1000Hz, the Host should send non 
integer number of bytes per frame. This is in fact managed by sending frames with 
different sizes (i.e. for 22.05 kHz, the Host will send 19 frames of 22 bytes and one 
frame of 23 bytes). This difference of sizes is not managed by the Audio core and the 
extra byte will always be ignored. It is advised to set a high and standard sampling rate 
in order to get best audio quality (i.e. 96 kHz or 48 kHz). Note that maximum allowed 
audio frequency is 96 kHz (this limitation is due to the codec used on the Evaluation 
board. The STM32 I2S cell enables reaching 192 kHz).

● For STM32F105/7 devices, the on-board Speaker output quality with 25MHz external 
quartz may be not sufficient (noise) due to lack of accuracy on audio output frequency 
using this quartz.

MS18198V1

> USB device Library started.
> Device in suspend mode.
> AUDIO Interface started.

>State : Application Active
[Key] : Switch Headphone/Speaker

USB OTG AUDIO Device

USB Device Library vx.x.x          [FS]

Audio device
configured and traffic
has started with the host.

Library version and 
Current device speed

}

}



UM1021 USB host library

Doc ID 18153 Rev 3 75/107

7 USB host library

The USB Host library: 

● Supports multi packet transfer features enabling the transmission of large amounts of 
data; without having to split it into maximum packet size transfers.

● Uses configuration files to change the core and the library configuration without 
changing the library code (Read Only). 

● 32-bit aligned data structures to handle DMA based transfer in High speed modes.

● Supports multi USB OTG core instances from user level.

● Built around global state machine.

● Fully compatible with real time operating system (RTOS).

7.1 Overview

Figure 32. USB host library overview

As shown in the above figure, the USB host library is composed of two main parts: the 
library core and the class drivers.

MS19710V1

Application module
Application User callbacks

USB library module (core)
USB host core

USB enumeration

USB class module

Class layer
(HID, audio, MSC, 
vendor-specific)

USB low-level driver module
HCD HCD ISRs

Core interface layer

USB control transfer 
management

Channels 
management

USB I/O requests



USB host library UM1021

76/107 Doc ID 18153 Rev 3

The library core is composed of five main blocks:

● Core host core

● USB enumeration

● USB control transfer management

● USB I/O requests

● Channels management

For all class-related operations, the core state machine hands over operation to a specific 
class driver. Two class drivers - HID and MSC - are implemented. These class drivers use 
core layer services for communicating with the low-level driver. Both the core and the class 
drivers communicate with the user application mainly through defined callback functions. 
The various host library blocks are described below.

7.2 USB host library files

Figure 33. USB host library file tree structure

The USB Host library is based on the generic USB OTG low level driver which supports 
Host, device and OTG modes and works for High speed, Full speed and Low speed (for host 
mode). 

The Core folder contains the USB Host library machines as defined by the Universal Serial 
Bus Specification, revision 2.0.

The Class folder contains all the files relative to the class implementation and meets with 
the specification of the protocol built in these classes. 



UM1021 USB host library

Doc ID 18153 Rev 3 77/107

7.3 USB host library description

7.3.1 Host core state machine

The following figure describes the library state machine.

Figure 34. USB host library state machine

The core state machine shows nine states:

● HOST_IDLE: after host initialization, the core starts in this state, where it polls for a 
USB device connection. This state is also entered when a device disconnection event 
is detected, and also when an unrecovered error occurs.

● HOST_ISSUE_CORE_RESET: this state is entered when a device is connected in 
order to generate a USB bus RESET.

● HOST_DEV_ATTACHED: the core enters this state when a device is attached. When a 
device is detected, the state machine moves to the HOST_ENUMERATION state. 

● HOST_ENUMERATION: in this state, the core proceeds with a basic enumeration of 
the USB device. At the end of enumeration process, the default device configuration 
(configuration 0) is selected.

● HOST_USR_INPUT: this is an intermediary state which follows the enumeration and 
which includes a wait for user input in order to start the USB class operation.

● HOST_CLASS_REQUEST: starting from this state, the class driver takes over, and a 
class request state machine is called in order to handle all the initial class control 
requests (ex: Get_Report_Descriptor for HID). After finishing the required class 
requests, the core moves to the HOST_CLASS state.



USB host library UM1021

78/107 Doc ID 18153 Rev 3

● HOST_CLASS: in this state, the class state machine is called for class-related 
operation (non-control and control operation).

● HOST_CTRL_XFER: this state is entered whenever there is a need for a control 
transfer.

● HOST_ERROR_STATE: this state is entered whenever there is an unrecovered error 
from any library state machine. In this case, a user-callback function is called (for 
example for displaying an unrecovered error message). Then the host library is re-
initialized.

The core state machine process is implemented by the USBH_Process function. This 
function should be called periodically from the application main loop. The initialization of the 
USB host library is implemented by the USBH_init function. This function should be called 
from the user application during initialization. For further details on this function, refer to 
Section 7.7.1: Library user API on page 88.

7.3.2 Device enumeration

After detecting a device, the host library proceeds with a basic enumeration of the device.

The following diagram shows the different steps involved in the device enumeration.

Figure 35. Device enumeration steps

MS19711V1

Get first 8 bytes of device descriptor

Get string descriptors
(MFC, product and serial number)

USB reset

Get full device descriptor

Set device address

Get configuration descriptor

Set device configuration



UM1021 USB host library

Doc ID 18153 Rev 3 79/107

The enumeration state machine is implemented in the USBH_HandleEnum library function, 
which is called from the core state machine process. USBH_HandleEnum function calls the 
following library routines (implemented in file usbh_stdreq.c):

A user callback will be called at the end of enumeration phase in order to enable the user to 
process the descriptor information (such as displaying descriptor data, for example). 

7.3.3 Control transfer state machine

The control transfer state machine is entered from the core or class driver whenever a 
control transfer is required. This state machine implements the standard stages for a control 
transfer, i.e. the setup stage, the optional data stage and the status stage.

The control transfer state machine is implemented in the USBH_HandleControl function. 
It is called from the core state machine process.

7.3.4 USB I/O request module

The USB I/O request module is located in the low layer of the core. It interfaces with the 
USB low-level driver for issuing control, bulk or interrupt USB transactions.

7.3.5 Host channel control module

The host channel control module is located in the lower layer of the core. It allows the 
configuration of a host channel for a particular operation (control, bulk or interrupt transfer 
type) and it assigns a selected host channel to a device endpoint for creating a USB pipe. 

7.3.6 USB host library configuration

The USB host library can be configured using the usbh_conf.h file (a template configuration 
file is available in the “Libraries\STM32_USB_Host_Library\Core\” directory of the library).

#define USBH_MAX_NUM_ENDPOINTS 2
#define USBH_MAX_NUM_INTERFACES 1
#define USBH_MSC_MPS_SIZE 0x200

7.4 USB host library functions
The Core layer contains the USB host library machines as defined by the revision 2.0 
Universal Serial Bus Specification. The following table presents the USB device core files.

         

Table 29. USB host core files

Files Description

usbh_core (.c, .h)
This file contains the functions for handling all USB communication and 
state machine.

usbh_stdreq(.c, .h) This file includes the chapter 9 request implementation.

usbh_ioreq (.c, .h) This file handles the generation of the USB transactions.

usbh_hcs (.c, .h) This file handles the host channel allocation and triggers processes.

usbh_conf.h
This file contains the configuration of the device interface number, 
configuration number and maximum packet size.



USB host library UM1021

80/107 Doc ID 18153 Rev 3

         

         

         

Note: USBH_SetCfg selects the default configuration (configuration 0).

USBH_SetAddress sets the device address to 0x1.

Table 30. USB I/O request module

Function Description

USBH_CtlSendSetup Issues a setup transaction.

USBH_CtlSendData Issues a control data OUT stage transaction.

USBH_CtlReceiveData Issues a control data IN stage transaction.

USBH_CtlReq
High level function for generating a control 
transfer (setup, data, status stages).

USBH_BulkSendData Issues a bulk OUT transaction.

USBH_BulkReceiveData Issues a bulk IN transaction.

USBH_InterruptSendData Issues an interrupt OUT transaction.

USBH_InterruptReceiveData Issues an interrupt IN transaction.

Table 31. Host channel control module

Function Description

USBH_Open_Channel Opens and configures a new host channel.

USBH_Modify_Channel Modifies an existing host channel.

USBH_Alloc_Channel
Assigns a host channel to a device endpoint 
(creation of a USB).

USBH_Free_Channel Frees a host channel.

USBH_DeAllocate_AllChannel
Frees all host channels (used during de-
initialization phase).

Table 32. Standard request module

Function Description

USBH_Get_CfgDesc Gets a configuration descriptor request.

USBH_Get_DevDesc Gets a device descriptor request.

USBH_Get_StringDesc Gets a string descriptor request.

USBH_GetDescriptor Generic get descriptor request.

USBH_SetCfg1) Sets a configuration request.

USBH_SetAddress2) Sets an address request.

USBH_ClrFeature Clears the feature request.



UM1021 USB host library

Doc ID 18153 Rev 3 81/107

7.5 USB host class interface
At the end of the enumeration, the core calls a specific class driver function to manage all 
class-related operations. 

Note: The proper class driver selection is not based on the result of device enumeration, but it is 
“pre-defined” when initializing the host library by calling the USBH_Init function.

A class driver is implemented using a structure of type USBH_Class_cb_TypeDef:
typedef struct _Device_cb

{

      USBH_Status (*Init) (USB_OTG_CORE_HANDLE *pdev , 
USBH_DeviceProp_TypeDef *hdev);

      void (*DeInit) (USB_OTG_CORE_HANDLE *pdev , USBH_DeviceProp_TypeDef 
*hdev);

     USBH_Status (*Requests)(USB_OTG_CORE_HANDLE *pdev, 
USBH_DeviceProp_TypeDef;*hdev);

     USBH_Status (*Machine) (USB_OTG_CORE_HANDLE *pdev , 
USBH_DeviceProp_TypeDef,*hdev);

}

 USBH_Class_cb_TypeDef;

The structure members are described below:

● Init: this function is called at the startup of a class operation for assuring all required 
initializations. This includes:

– Parsing interface and endpoint descriptors (please note that the current USB host 
library supports only one interface).

– Opening and allocating host channels for non-control endpoints,

– Calling a user callback, in case the device is not supported by the class.

● Denit: this function is called for freeing allocated host channels when re-initializing the 
host. It is called when a device is unplugged or in case of unrecovered error.

● Requests: this function implements the class request state machine. It is called during 
the HOST_CLASS_REQUEST state. It is used to process initial class requests.

● Machine: implements the class core state machine. It is called during the 
HOST_CLASS core state.

7.6 USB host classes

7.6.1 Mass storage class

The mass storage class driver is used to support the common USB flash driver, using the 
BOT “Bulk-Only Transport” protocol and the Transparent SCSI command set. The following 
modules, located in the “Libraries\STM32_USB_HOST_Library\Class\MSC” folder, are used 
to implement the MSC driver.



USB host library UM1021

82/107 Doc ID 18153 Rev 3

         

The block diagram in the following figure shows the interactions between these modules.

Figure 36. Block diagram organization of the MSC driver

Operation flow description:

The MSC core state machine starts with the required device initializations, which are:

● Issuing GET_MAX_LUN class requests for detecting the number of device logical units 
present on the device. Please note that only devices with one logical unit are 
supported.

● Issuing BOT_RESET class requests for resetting the device BOT state machine.

● Issuing SCSI commands: MODE_SENSE for detecting if the device is write-protected 
and READ_CAPACITY for detecting the size of the Flash pendrive. After the above 
device initializations, the MSC core state machine calls the application user callback.

The user callback can perform any type of file access into the used file system. This 
operation is translated into a logical page read or write operation. The file system interface 
provides the connection between the used file system and the MSC driver.

At the SCSI level, the logical page read or write operations are converted into SCSI 
commands: READ(10) or WRITE(10). These commands are transferred to the Flash 
pendrive device using the Bulk-Only Transport protocol.

Table 33. Modules

Module Description

usbh_msc_core.c /.h MSC core state machine implementation.

usbh_msc_bot.c /.h BOT (Bulk-Only Transport) protocol implementation.

usbh_msc_scsi.c /.h SCSI command implementation.

usbh_msc_fatfs.c/.h
Functions for interfacing with a file system for file access 
operations.

MS19712V1

BOT state machine

MSC class core

USB I/O requests

SCSI commands

File system driver

File system (FAtFS)

User MSC application callbacks

MSC class  module



UM1021 USB host library

Doc ID 18153 Rev 3 83/107

The BOT layer state machine issues the required Bulk IN and Bulk OUT transactions using 
the core USB I/O request module. Each MSC module is described below.

MSC core module

The MSC core module “usb_msc_core.c” implements the MSC driver, which is defined in 
the structure USBH_MSC_cb of type USBH_Class_cb_TypeDef (see Section 7.5).
USBH_Class_cb_TypeDef USBH_MSC_cb =

{

USBH_MSC_InterfaceInit,

USBH_MSC_InterfaceDeInit,

USBH_MSC_ClassRequest,

USBH_MSC_Handle,

};

         

MSC BOT module

The MSC “Bulk-Only Transport” (BOT) module implements the transport protocol for 
sending the SCSI commands (such as READ (10) or WRITE(10)). This module is 
implemented in the “usbh_msc_bot.c” file. For details about the BOT protocol, please refer 
to the usb.org mass storage class document.

The BOT module has the following functions.

         

MSC SCSI module

The SCSI (Small Computer System Interface) module usb_msc_scsi.c stands on top of the 
BOT. It implements the set of SCSI commands required to access the Flash pendrives.

Table 34. MSC core module description

Function Description

USBH_MSC_InterfaceInit
Parses interface and endpoint descriptors and configures 
host channels (bulk IN and bulk OUT pipes).

USBH_MSC_InterfaceDeInit De-initialization routine (freeing host channels).

USBH_MSC_ClassRequest
In case of MSC, this function only moves the library core 
state machine to the HOST_CLASS state.

USBH_MSC_Handle Implements the MSC handler core state machine.

USBH_MSC_Issue_BOTReset Issues a BOT reset class request.

USBH_MSC_Issue_GETMaxLUN Issues a GET_MAX_LUN class request.

USBH_MSC_ErrorHandle MSC error handling.

Table 35. MSC BOT module description

Function Description

USBH_MSC_Init Initialize BOT state machine.

USBH_MSC_HandleBOTXfer BOT transfer state machine.



USB host library UM1021

84/107 Doc ID 18153 Rev 3

         

MSC file system interface module

The MSC file system interface module “usbh_msc_fatfs.c” allows interfacing of file systems 
with the MSC driver. This module should be ported to the selected file system.

The current USB host library package comes with the open source; FatFS file system 
support (see next section for an overview about the FatFS API). The functions implemented 
in the file system interface are:

         

Note: For the FatFS file system, the page size is fixed to 512 bytes. USB pendrives with Flash 
memories having higher page size are not supported.

Table 36. MSC SCSI commands

Function Description

USBH_MSC_Read10 Command for logical Block Read.

USBH_MSC_Write10 Command for logical Block Write.

USBH_MSC_TestUnitReady Command for checking Device Status.

USBH_MSC_ReadCapacity10 Command for requesting the Device Capacity.

USBH_MSC_ModeSense6
Command for checking the Write-protect status of the mass 
storage device.

USBH_MSC_RequestSense Command for getting error information.

Table 37. MSC file system interface functions

Function Description

disk_initialize Initialize disk drive.

disk_read Interface function for a logical page read.

disk_write Interface function for a logical page write.

disk_status Interface function for testing if unit is ready.

disk_ioctl Control device-dependent features.



UM1021 USB host library

Doc ID 18153 Rev 3 85/107

FatFS application programming interface

7.6.2 HID class

The HID class implementation in v1.0 of the USB host library is used to support HID boot 
mouse and keyboard devices. HID reports are received using the interrupt IN transfer.

The following modules, located in the Libraries\STM32_USB_HOST_Library\Class\HID 
folder, are used to implement the HID class.

Table 38. FatFS API commands

Function Description

f_mount  Register/Unregister a work area.

f_open  Open/Create a file.

f_close  Close a file.

f_read  Read file.

f_write  Write file.

f_lseek  Move read/write pointer, expand file size.

f_truncate  Truncate file size.

f_sync  Flush cached data.

f_opendir  Open a directory.

f_readdir  Read a directory item.

f_getfree  Get free clusters.

f_stat  Get file status.

f_mkdir  Create a directory.

f_unlink  Remove a file or directory.

f_chmod  Change attribute.

f_utime  Change timestamp.

f_rename  Rename/Move a file or directory.

f_mkfs  Create a file system on the drive.

f_forward  Forward file data to the stream directly.

f_chdir  Change current directory.

f_chdrive  Change current drive.

f_getcwd  Retrieve the current directory.

f_gets  Read a string.

f_putc  Write a character.

f_puts  Write a string.

f_printf  Write a formatted string.



USB host library UM1021

86/107 Doc ID 18153 Rev 3

         

The main functions of each module are described below.

HID class core

The HID core module usb_hid_core.c implements the HID class driver structure 
USBH_HID_cb of type USBH_Class_cb_TypeDef (see Section 7.5).
USBH_Class_cb_TypeDef  USBH_HID_cb =

{

USBH_HID_InterfaceInit, 

USBH_HID_InterfaceDeInit, 

USBH_HID_ClassRequest, 

USBH_HID_Handle

};

The following table summarizes the functions implemented in the HID core module.

         

Table 39. HID class modules

File Description

usbh_hid_core.c /.h This module implements the HID class core state machine.

usbh_hid_mouse.c /.h HID mouse specific routines.

usbh_hid_keybd.c /.h HID keyboard specific routines.

Table 40. MSC core module functions

Function Description

USBH_HID_InterfaceInit
Parses interface and endpoint descriptors and configures a 
host channel in order to have an interrupt IN pipe (for getting 
HID reports).

USBH_HID_InterfaceDeInit Frees the allocated interrupt IN pipe.

USBH_HID_ClassRequest
Implements a state machine of the required class requests 
for HID mouse and keyboard devices (ex: getting HID report 
descriptors, setting IDLE time, setting Protocol).

USBH_HID_Handle
HID class core state machine (processing of interrupt IN 
transfers).

USBH_Get_HID_ReportDescripto
r

Class request for getting HID report descriptor.

USBH_ParseClassDesc Function used for parsing HID report descriptor.

USBH_Set_Idle Class request for setting IDLE time.

USBH_Set_Report
Class request for sending Report OUT data (not used in the 
demonstration software).

USBH_Set_Protocol Class request for setting the HID protocol: Boot or Report(1).

1. USB_Set_Protocol is called to set the Boot protocol mode.



UM1021 USB host library

Doc ID 18153 Rev 3 87/107

HID mouse and keyboard specific management

The mouse or keyboard device is detected when parsing the interface descriptor in the 
USBH_HID_InterfaceInit function.

The specific initialization for each type of device and the decoding of the received report IN 
data is performed by two functions which are declared in a structure of type 
HID_cb_TypeDef, which is defined as follows:
typedef struct HID_cb

{

void (*Init)(void);

void (*Decode) (uint8_t *data);

} HID_cb_TypeDef;

The implementation of the above structures in case a mouse or keyboard is respectively 
found in HID_MOUSE_cb and HID_MOUSE_cb is as follows:
HID_cb_TypeDef HID_MOUSE_cb =

{

MOUSE_Init, 

MOUSE_Decode,

};

HID_cb_TypeDef HID_KEYBRD_cb=

{

KEYBRD_Init,

KEYBRD_Decode

};

         

Note: You can select AZERTY or QWERTY keyboard through the defines QWERTY_KEYBOARD 
and AZERTY_KEYBOARD in the usbh_hid_keybd.h file.

Table 41. Mouse and keyboard initialization & HID report decoding functions

Function Description

MOUSE_Init Initialization routine for USB mouse.

MOUSE_Decode
HID report decoding for mouse (decoding mouse x, y 
positions, pressed buttons).

KEYBRD_Init Initialization routine for USB keyboard.

KEYBRD_Decode
HID report decoding for keyboard (decoding of the key 
pressed on the keyboard).



USB host library UM1021

88/107 Doc ID 18153 Rev 3

7.7 USB host user interface

7.7.1 Library user API

The library user API functions are limited to the two following functions:

● void USBH_Process (void): this function implements core state machine process. 
It should be called periodically from the user main loop.

● USBH_Init: this function should be called for the initialization of the USB host 
hardware and library.

USBH_Init has the following function prototype:
void USBH_Init (USB_OTG_CORE_HANDLE *pdev,

USB_OTG_CORE_ID_TypeDef coreID, 

USBH_HOST *phost,                    

USBH_Class_cb_TypeDef *class_cb, 

USBH_Usr_cb_TypeDef *usr_cb);

● pdev: pointer on the USB host core register structure 

● CoreID: USB OTG core identifier (select the USB core to be used) .

● phost: pointer on the USB host machine structure (reserved for future use).

● class_cb: pointer to a class structure of type USBH_Class_cb_TypeDef. It can be 
either USBH_MSC_cb for handling MSC devices or USBH_HID_cb for handling HID 
mouse/keyboard devices.

● usr_cb: pointer to a structure of type USBH_Usr_cb_TypeDef. This structure defines  
class-independent callbacks (see Class-independent callback functions on page 89).

7.7.2 User callback functions

User callbacks are declared in the usbh_usr.c user template file. Two types of user callbacks 
are defined:

● Callback functions related to the class operations (MSC or HID).

● Callback functions independent from class operations. They are mainly called during 
the enumeration phase. These callbacks are defined in a structure of type   
USBH_Usr_cb_TypeDef. They are generally used to show messages in the different 
enumeration stage.

7.7.3 Class callback functions

MSC user callback functions

For MSC, the following callback is used: USBH_USR_MSC_Application (). After the end 
of the class initializations, this function is called by the MSC state machine in order to give 
hand to the user for file system access operations.

In this callback, the user can implement any access to the FAT file system (file open, file 
read, file write...) using the FAT FS file system API. The user can also have access to a 
structure variable exported from the library MSC class driver: USBH_MSC_Param. 



UM1021 USB host library

Doc ID 18153 Rev 3 89/107

This variable provides some information about the mass storage key. It is defined using a 
structure of type MassStorageParameter_TypeDef, as described below:
typedef struct __MassStorageParameter

{

uint32_t MSCapacity; /*MS device capacity in bytes */

uint32_t MSSenseKey; /*Request Sense SCSI command returned value */

uint16_t MSPageLength; /* MS device Page length */

uint8_t MSBulkOutEp; /* Bulk OUT endpoint address */

uint8_t MSBulkInEp; /*Bulk IN endpoint address */

uint8_t MSWriteProtect; /*Write protection status, 0: non protected, 
1:protected */

} MassStorageParameter_TypeDef;

HID user callback functions

For the HID class, the following callbacks are defined:

● void USR_MOUSE_Init(void): user initialization for mouse application.

● void USR_KEYBRD_Init(void): user initialization for keyboard application.

● void USR_MOUSE_ProcessData(HID_MOUSE_Data_TypeDef *data): this 
callback is called when an input parameter data of type HID_MOUSE_Data_TypeDef 
(see Note below) is available.

● void USR_KEYBRD_ProcessData (uint8_t data): this callback is called when a 
new ASCII character is typed. The character is received in input parameter data.

Note: HID_MOUSE_Data_TypeDef is defined as follows:
typedef struct _HID_MOUSE_Data

{

uint8_t x;

uint8_t y;

uint8_t z; /* Not Supported */

uint8_t button; /*Bitmap showing pressed buttons 1:pressed, 0: non pressed 
*/

} HID_MOUSE_Data_TypeDef;

Class-independent callback functions

The class-independent callback functions are defined in a structure of type  
USBH_Usr_cb_TypeDef as follows:
typedef struct _USBH_USR_PROP

{

void (*Init)(void);

void (*DeviceAttached)(void);

void (*ResetDevice)(void);

void (*DeviceDisconnected)(void);

void (*OverCurrentDetected)(void);

void (*DeviceSpeedDetected)(uint8_t DeviceSpeed);

void (*DeviceDescAvailable)(void *);

void (*DeviceAddressAssigned)(void);



USB host library UM1021

90/107 Doc ID 18153 Rev 3

void (*ConfigurationDescAvailable)(USBH_CfgDesc_TypeDef *,

USBH_InterfaceDesc_TypeDef *,

USBH_EpDesc_TypeDef *);

void (*ManufacturerString)(void *);

void (*ProductString)(void *);

void (*SerialNumString)(void *);

void (*EnumerationDone)(void);

USBH_USR_Status (*UserInput)(void);

int (*USBH_USR_MSC_Application) (void);

void (*USBH_USR_DeviceNotSupported)(void);

void (*UnrecoveredError)(void);

}

USBH_Usr_cb_TypeDef;

The above callback functions are described below.

● Init: called during initialization by USBH_Init core function. In this function, the user 
can implement any specific intialization related to his application.

● DeviceAttached: called when a USB device is attached. It can be useful to inform 
the user of any device attachment using a display screen.

● DeviceReset: called after a USB reset is generated from the host.

● DeviceDisconnect: called when a device is disconnected.

● OverCurrentDetected: called when an overcurrent is detected on USB VBUS.

● DeviceSpeedDetected: called when the device speed is detected (see note 1).

● DeviceDescAvailable: called when a device descriptor is available (see note 2).

● DeviceAddressAssigned: called when the device address is assigned.

● ConfigurationDescAvailable: called when configuration, interface and endpoint 
descriptors are available (see note 3).

● ManufacturingString: called when manufacturing string is extracted.

● ProductString: called when product string is extractcted.

● SerialNumString: called when serial num string is extracted.

● EnumerationDone: called when enumeration is finished.

● UserInput: called after the end of the enumeration process, for prompting the user for 
further action, such as pressing a button to start a host class operation (see note 4).

● USBH_USR_MSC_Application: called to launch the class application process.

● USBH_USR_DeviceNotSupported: called when the detected device is not supported 
by the current class driver.

● UnrecoveredError: called when the core state machine is in  
"HOST_ERROR_STATE" state. It allows the user to handle any error, by displaying an 
error message on the LCD screen for example.

Note: Device speed information is returned in the DeviceSpeed parameter. Possible values are: 
0x1 for Full speed devices and 0x2 for Low speed devices.

Device descriptor information is returned in the pointer DeviceDesc, which points to a 
structure of type USBH_DevDesc_TypeDef defined as follows:
typedef struct _DeviceDescriptor

{



UM1021 USB host library

Doc ID 18153 Rev 3 91/107

uint8_t bLength;

uint8_t bDescriptorType;

uint16_t bcdUSB; /* USB Specification Number which device complies too */

uint8_t bDeviceClass;

uint8_t bDeviceSubClass;

uint8_t bDeviceProtocol;

uint8_t bMaxPacketSize;

uint16_t idVendor; /* Vendor ID (Assigned by USB Org) */

uint16_t idProduct; /* Product ID (Assigned by Manufacturer) */

uint16_t bcdDevice; /* Device Release Number */

uint8_t iManufacturer; /* Index of Manufacturer String Descriptor */

uint8_t iProduct; /* Index of Product String Descriptor */

uint8_t iSerialNumber; /* Index of Serial Number String Descriptor */

uint8_t bNumConfigurations; /* Number of Possible Configurations */

}

USBH_DevDesc_TypeDef

Device configuration information (config, interface and endpoint descriptors) are returned 
with pointers on structures USBH_CfgDesc_TypeDef,  USBH_InterfaceDesc_TypeDef  
and USBH_EpDesc_TypeDef defined as follows:
typedef struct _ConfigurationDescriptor

{

uint8_t bLength;

uint8_t bDescriptorType;

uint16_t wTotalLength;

uint8_t bNumInterfaces;

uint8_t bConfigurationValue;

uint8_t iConfiguration;

uint8_t bmAttributes;

uint8_t bMaxPower;

}

USBH_CfgDesc_TypeDef;

typedef struct _InterfaceDescriptor

{

uint8_t bLength;

uint8_t bDescriptorType;

uint8_t bInterfaceNumber;

uint8_t bAlternateSetting; /* Value used to select alternative setting */

uint8_t bNumEndpoints; /* Number of Endpoints used for this interface */

uint8_t bInterfaceClass; /* Class Code (Assigned by USB Org) */

uint8_t bInterfaceSubClass; /* Subclass Code (Assigned by USB Org) */

uint8_t bInterfaceProtocol; /* Protocol Code */

uint8_t iInterface; /* Index of String Descriptor Describing this interface 
*/

}



USB host library UM1021

92/107 Doc ID 18153 Rev 3

USBH_InterfaceDesc_TypeDef;

typedef struct _EndpointDescriptor

{

uint8_t bLength;

uint8_t bDescriptorType;

uint8_t bEndpointAddress; /* indicates what endpoint this descriptor is 
describing */

uint8_t bmAttributes; /* specifies the transfer type. */

uint16_t wMaxPacketSize; /* Maximum Packet Size this endpoint is capable of

sending or receiving */

uint8_t bInterval; /* is used to specify the polling interval of certain 
transfers. */

}

USBH_EpDesc_TypeDef;

In order to move the core state machine to HOST_CLASS_REQUEST state, the UserInput 
callback should return the value USBH_USR_RESP_OK of type USBH_USR_Status.
typedef enum {

USBH_USR_NO_RESP = 0, /*no response from user */

USBH_USR_RESP_OK = 1,

}

USBH_USR_Status;

7.8 Application layer description

Figure 37. Folder organization

For each example, the source folder is split into src (sources) and inc (includes) 

● The “sources” directory includes the following files:

– app.c: contains the main function



UM1021 USB host library

Doc ID 18153 Rev 3 93/107

– stm32fxxx_it.c: contains the system interrupt handlers

– system_stm32fxxx.c: system clock configuration file for STM32Fxxx devices

– usb_bsp.c: contains the function implementation (declared in the usb_bsp.h file in 
the USB OTG Low Level Driver) to initialize the GPIO for the core, time delay 
methods and interrupts enabling/disabling process.

– usbh_usr.c: contains the function implementation (declared in the usbh_usr.h file 
in the USB Library) to handle the library events from user layer (event messages).

● The “includes” directory contains the following files:

– stm32fxxx_it.h: header file stm32fxxx_it.c file

– usb_conf.h: configuration files for the USB OTG low level driver.

– usbh_conf.h: configuration files for the USB Host library.

Note: For HID demonstration the usbh_usr_lcd.c file is used to draw the mouse graphical.

For Dual core demonstration, additional files are used: 
- dual_core_demo.c/.h: implementation of the demonstration.
- usbh_msc_usr .c/.h: contains the user callbacks for mass storage layer.
- usbh_hid_usr.c/.h: contains the user callbacks for HID layer.

When using the USB OTG Full speed core, the user should use the CN8 connector on the 
STM322xG-EVAL and STM324xG-EVAL or the CN2 connector when the STM3210C-EVAL 
is used.

When using the USB OTG High speed core, the user should use the CN9 connector on the 
STM322xG-EVAL and STM324xG-EVAL boards.

7.9 Starting the USB host library
Since the USB Library can handle multi core instances, the user has to define beforehand 
the core device handle and the host structure pointer in the main file.

         

The USB Library is built in interrupt model; from application layer, the user has only to call 
the USBH_Init () function and pass the user and class callbacks. The USB internal 
process is handled internally by the USB library and triggered by the USB interrupts from 
the USB driver.



USB host library UM1021

94/107 Doc ID 18153 Rev 3

         

7.10 USB host examples
Each project for an example based on a class is given with five configurations, as follows 
(exception made for USB Host dual core example). 

1. STM322xG-EVAL_USBD-HS: High-speed example on the STM322xG-EVAL board 
working with USB OTG HS core and the ULPI PHY

2. STM322xG-EVAL_USBD-FS: Full-speed example on the STM322xG-EVAL board 
working with USB OTG FS core and the embedded FS PHY

3. STM324xG-EVAL_USBD-HS: High-speed example on the STM324xG-EVAL board 
working with USB OTG HS core and the ULPI PHY

4. STM324xG-EVAL_USBD-FS: Full-speed example on the STM324xG-EVAL board 
working with USB OTG FS core and the embedded FS PHY

5. STM3210C-EVAL_USBD-FS: Full-speed example on the STM3210C-EVAL board 
working with USB OTG FS core and the embedded FS PHY.

For the High speed examples, the following features are selected in the usb_config.h file:

● USB_OTG_HS_ULPI_PHY_ENABLED:  ULPI Phy is used

● USB_OTG_HS_INTERNAL_DMA_ENABLED: internal DMA is used

Important notes:

Note: The USB Host examples are using the lcd_log.c module to redirect the Library and User 
messages on the screen. Depending on the LCD cache depth used to scroll forward and 
backward within the message, the applications footprints are impacted. With bigger LCD 
cache depth, the RAM footprint is consequently increased. To prevent this additional RAM 



UM1021 USB host library

Doc ID 18153 Rev 3 95/107

footprint, the user can redirect the Library and User messages on other terminal 
(HyperTerminal or LCD using the native display functions).

Library and User messages are located in the user callbacks in the application layer. They 
are not mandatory and they are used for information and debug purpose only. They can be 
modified or even removed. 

7.10.1 USB mass storage host example

When attaching a mass storage device to the STM322xG-EVAL, STM324xG-EVAL or 
STM3210C-EVAL board, the LCD displays the following text (for example, when plugging in 
the Kingston Data Traveler G2 USB Flash drive).

Figure 38. USB mass storage host display message

When the user press the user key [B4], the application explore the USB flash disk content 
and the LCD displays the following messages: 

MS18199V1

> USB host Library started.
> Device attached
> High speed detected.
VID:0483h
PID: 3251h
> Mass storage device connected
> Manufacturer: STMicroelectronics
> Product USB HS disk flash
> Serial number: 000056789E 
> Enumeration completed. 

To see the root content of the disk : 
Press Key…

USB OTG HS MSC Host

USB Device Library vx.x.x

High speed device 
has been detected 
and correctly enumerated



USB host library UM1021

96/107 Doc ID 18153 Rev 3

Figure 39. USB mass storage explorer display message

The user has to press the user key [B4] to display the whole disk flash (recursion level 2).

Once the entire disk flash is shown: 

Figure 40. USB mass storage explorer display message (last screen)

The user has to press the user key [B4] to write a small file (less to 1 KB) on the disk.

MS20000V1

> File System initilized
> Disk capacity : 1001945220 Bytes
> Exploring disk flash : 
  |--Directory1
  |--Directory2
  |     |-- File1
  |     |-- File2
  |     |-- File3
  |     |-- File4
  |--Directory3
  |--Directory4
  |--Directory5
  |--File 5

Press Key to continue...

USB OTG HS MSC Host

USB Device Library vx.x.x

MS20001V1

  |--Directory1
  |--Directory2
  |     |-- File1
  |     |-- File2
  |     |-- File3
  |     |-- File4
  |--Directory3
  |--Directory4
  |--Directory5
  |--File 5
  |--Directory6
  |     |-- File6

Press Key to write file...

USB OTG HS MSC Host

USB Device Library vx.x.x



UM1021 USB host library

Doc ID 18153 Rev 3 97/107

Figure 41. USB mass storage write file display message

After writing the file to the disk, the user can press the user key [B4] and start the Image 
slide show (BMP file located in the USB Disk root).

Figure 42. USB mass storage slideshow example

The image advancement is done automatically each one second. Once all the images are 
displayed, the application explores again the disk flash (Figure 39).

Note: The application header (title) depends on the board in use, once the full speed port is used, 
the title is: “USB OTG FS MSC Host”.

Only the BMP files with the following format are supported: Width = 320, Height = 240,   
BPP = 16 and Compression = RGB bitmap with RGB masks.

MS20002V1

  |     |-- File2
  |     |-- File3
  |     |-- File4
  |--Directory3
  |--Directory4
  |--Directory5
  |--File 5
  |--Directory6
  |     |-- File6
  
> Writing File to disk flash
> ‘Host_Write_Demo.TXT” file created. 

To start the image slide show Press Key...

USB OTG HS MSC Host

USB Device Library vx.x.x

MS20003V1

USB OTG HS MSC Host

USB Device Library vx.x.x



USB host library UM1021

98/107 Doc ID 18153 Rev 3

7.10.2 USB HID Host example

When attaching a HID device to the STM322xG-EVAL, STM324xG-EVAL or STM3210C-
EVAL board, the LCD displays the following text (for example, when plugging Logitech USB 
mouse or a keyboard).

Figure 43. USB HID Host connected display message

When the user press the user key [B4], the application displays the mouse pointer and 
buttons.

Figure 44. USB HID Host user key message

Moving the mouse will move the pointer in the display rectangle and if a button is pressed, 
the corresponding rectangle will be highlighted in green

If a keyboard has been attached, the display show the following messages and the taped 
characters are displayed in green on the display. 

MS20004V1

> USB host Library started.
> Device attached
> High speed detected.
VID:046dh
PID: c016h
> HID device connected
> Manufacturer: Logitech
> Product Optical USB mouse
> Serial number:  N/A
> Enumeration completed. 

To start the HID class operations : 
Press Key…

USB OTG HS HID Host

USB Device Library vx.x.x

High speed device 
has been detected 
and correctly enumerated

MS20005V1

> Product Optical USB mouse
> Serial number:  N/A

  

USB OTG HS MSC Host

USB Device Library vx.x.x

x



UM1021 USB host library

Doc ID 18153 Rev 3 99/107

Figure 45. USB HID Host text example message

Note: The application header (title) depends on the board in use, once the full speed port is used, 
the title is: “USB OTG FS MSC Host”

7.10.3 USB dual core host example

In this demonstration, the user can use one or two devices, the mass storage device should 
be connected to the high speed port while the HID device should be connected to the full 
speed port. 

Figure 46. USB dual core host example

To move within the menu, the user has to use the embedded joystick, the menu structure is 
as follows.

MS20006V1

> Product Optical USB mouse
> Serial number:  N/A
> use keyboard to tape characters : 

 This is USB OTG HS HID demo:  a keyboard is connected.

USB OTG HS HID Host

USB Device Library vx.x.x

Text entered by the 
attached keyboard.

MS20007V1

> High speed detected.
> HID device connected
> Manufacturer: Logitech
> Product Optical USB mouse
> Serial number:  N/A
> Enumeration completed. 
> Low speed detected.
> HID device connected
> Manufacturer: Logitech
> Product Optical USB mouse
> Serial number:  N/A
> Enumeration completed. 

USB OTG Dual Core Host

3.  Mass Storage demo

High-speed device 
has been detected and 
correctly enumerated

Low-speed device 
has been detected and 
correctly enumerated

1.  Mass Storage demo
2.  Human Interface demo



USB host library UM1021

100/107 Doc ID 18153 Rev 3

Figure 47. Menu structure

7.10.4 USB manual dual role device example

In this demonstration, the user can use Host or Device mode on the same core by selecting 
through the menu the sub-demo to run. In both Device and Host modes, the mass storage 
class is used. 

Figure 48. USB Manual DRD example

MS19714V1

Main menu

1. Mass storage demo
2. Human interface demo
3. Re-enumerate

Mass storage menu

1. Explore flash content
2. Write file to disk
3. Show BMP file
4. Return

HID menu

1. Start HID application
2. Show HID report
3. Return

MS20008V1

> Initializing demo
> Demo initialized.
> Use joystick to select demo

USB Manual DRD Demo

3.  Credits

1.  Host demo
2.  Device demo



UM1021 USB host library

Doc ID 18153 Rev 3 101/107

To move within the menu, the user has to use the embedded joystick, the menu structure is 
as follows.

Figure 49. Menu structure

MS19715V1

Main menu

1. Host demo
2. Device demo
3. Credits

Mass storage menu

1. Explore flash content
2. Write file to disk
3. Show BMP file
4. Return

HID menu

1. Return



Frequently-asked questions UM1021

102/107 Doc ID 18153 Rev 3

8 Frequently-asked questions

1. How can the USB Device Library be configured to run in either High Speed or 
Full Speed mode?

The Library can handle the USB OTG HS and USB OTG FS core, if the USB OTG FS 
core can only work in Full Speed mode, the USB OTG HS can work in High or Full 
Speed mode. For that the user has to:

a) Select the core to be used during the library initalization, issuing one of the two 
core IDs: 

– USB_OTG_HS_CORE_ID

– USB_OTG_FS_CORE_ID

Example:
USBD_Init(&USB_OTG_dev,
#ifdef USE_USB_OTG_HS 

USB_OTG_HS_CORE_ID,
#else            

USB_OTG_FS_CORE_ID,
#endif             

…);
b) Select the USB OTG Core, HS or FS, in usb_conf.h file: 

– USE_USB_OTG_HS (*): if the USB OTG HS Core is to be used

– USE_USB_OTG_FS (*): if the USB OTG FS Core is to be used

c) Select the PHY to be used, in usb_conf.h file:

For the USB OTG HS Core, you can select the PHY to be used using one of these 
two defines:

– USE_ULPI_PHY (*): if the USB OTG HS Core is to be used in High speed mode 

– USE_EMBEDDED_PHY (*): if the USB OTG HS Core is to be used in Full speed 
mode

For USB OTG FS Core, the on-chip Full Speed PHY is used (no need for any 
configuration).

Note: (*) To avoid modifying these defines each time you need to change the USB configuration, 
you can declare the needed define in your toolchain compiler preprocessor. 

The USE_ULPI_PHY symbol is defined in the project compiler preprocessor as default PHY 
when the HS core is used.

On STM322xG-EVAL and STM324xG-EVAL boards and for the HS core, only the external 
ULPI High Speed PHY is available. On-chip Full Speed PHY need a different hardware. For 
more details refer to your STM32 device datasheet.

2. How can the used endpoints be changed in the USB Device class driver?

To change the endpoints or to add a new endpoint: 

a) Perform the endpoint initialization using DCD_EP_Open().

b) Configure the TX or the Rx FIFO size of the new defined endpoints in the 
usb_conf.h file.

Note: The total size of the Rx and Tx FIFOs should be lower than the Total FIFO size of the used 
core (320 x 32 bits for USB OTG FS core and 1024 x 32 bits for the USB OTG HS core).



UM1021 Frequently-asked questions

Doc ID 18153 Rev 3 103/107

3. How can the Device and string descriptors be modified on-the-fly?

In the usbd_desc.c file, the descriptor relative to the device and the strings can be 
modified using the Get Descriptor callbacks. The application can return the correct 
descriptor buffer relative to the application index using a switch case statement.

4. How can the mass storage class driver support more than one logical unit 
(LUN)?

In the usbd_storage_template.c file, all the APIs needed to use physical media are 
defined. Each function comes with the “LUN” parameter to select the addressed media. 

The number of supported LUNs can be changed using the define STORAGE_LUN_NBR 
in the usbd_storage_xxx.c file (where, xxx is the medium to be used).

For the inquiry data, the STORAGE_Inquirydata buffer contains the standard inquiry 
data for each LUN.

Example:  2 LUNs are used.
const int8_t  STORAGE_Inquirydata[] = {

/* LUN 0 */

0x00,

0x80,

0x02,

0x02,

(USBD_STD_INQUIRY_LENGTH - 5),

0x00,

0x00,

0x00,

'S', 'T', 'M', ' ', ' ', ' ', ' ', ' ', /* Manufacturer:
8 bytes */

'm', 'i', 'c', 'r', 'o', 'S', 'D', ' ', /* Product: 
16 Bytes */

'F', 'l', 'a', 's', 'h', ' ', ' ', ' ',

'1', '.', '0' ,'0', /* Version: 4 Bytes */

/* LUN 0 */

0x00,

0x80,

0x02,

0x02,

(USBD_STD_INQUIRY_LENGTH - 5),

0x00,

0x00,

0x00,

'S', 'T', 'M', ' ', ' ', ' ', ' ', ' ', /* Manufacturer:
8 bytes */

'N', 'a', 'n', 'd', ' ', ' ', ' ', ' ', /* Product: 
16 Bytes */



Frequently-asked questions UM1021

104/107 Doc ID 18153 Rev 3

'F', 'l', 'a', 's', 'h', ' ', ' ', ' ',

'1', '.', '0' ,'0', /* Version: 4 Bytes */

};

5. How can the DFU class driver support more than one memory interface?
To add an additional memory interface:

a) In the usbd_conf.h file (under Project\USB_Device_Examples\DFU\inc), change 
the following define: #define MAX_USED_MEDIA  

For example:

#define MAX_USED_MEDIA      2

b) Implement the APIs given by the following structure:  DFU_MAL_Prop_TypeDef   
to implement the media I/O requests (Read, Write, Erase …etc), the prototype of 
each API is given in the usbd_dfu_mal.h file.

c) Add the interface string of the new medium to be added in the 
usbd_dfu_StringDesc table defined in the usbd_dfu_mal.c file.

6. How can the keyboard layout be changed in the USBH HID class?

In the USB Host HID class, two layouts are defined in the usbh_hid_keybd.h file and 
can be used (Azerty and Querty). Uncomment the required keyboard layout:

//#define QWERTY_KEYBOARD

#define AZERTY_KEYBOARD

The User can eventually add his own layout by editing the HID_KEYBRD_Key array  in 
the usbh_hid_keybd.c file.



UM1021 Troubleshooting

Doc ID 18153 Rev 3 105/107

9 Troubleshooting

1. When resetting USB device applications (HS mode) using the Reset button on the 
STM322xG-Eval board RevB, the device enters Suspend mode and cannot leave this 
state until the power cable is removed.

This issue is due to the fact that the ULPI Phy reset pin is always connected in high 
state by a hardware pull-up.  In order to use the Reset button to reset the ULPI Phy 
interface, the reset pin of the PHY must be connected by hardware to the Reset button.

2. After removing the USB cable on USB HID devices in Full Speed mode, the core 
seems to enter Stop mode and the LEDs stop blinking. Is this normal behavior?

Yes, this is normal behavior. When a suspend state is detected over the USB data bus, 
the core enters Low Power mode and only a wakeup event or a new connection to the 
host can wake up the device.

This behavior can be changed by disabling Low Power mode in the usb_conf.h file by 
commenting the #define USB_OTG_FS_LOW_PWR_MGMT_SUPPORT define

3. Even if the #define USB_OTG_HS_LOW_PWR_MGMT_SUPPORT is uncommented, the 
USB HID Device enters Low Power mode but cannot wakeup after a new Host 
connection.

This behavior is normal since the wakeup signal in the USB OTG HS Core is available 
only when the USB OTG HS core is working in Full Speed mode.



Revision history UM1021

106/107 Doc ID 18153 Rev 3

10 Revision history

         

Table 42. Document revision history

Date Revision Changes

26-Nov-2010 1 Initial release.

08-Aug-2011 2
Major document revision to include both the USB On-The-Go host 
and device libraries for STM32F105/7 and STM32F2xx devices.

08-Mar-2012 3
Added STM32F4xx devices.
Removed Appendix A.
Changed format of the document (for codes).



UM1021

Doc ID 18153 Rev 3 107/107

         

 

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - 
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com


	1 Reference information
	1.1 Glossary
	Table 1. List of terms


	2 USB host and device library overview
	Figure 1. USB host and device library organization overview
	2.1 Main features

	3 USB host and device library folder structure
	Figure 2. Folder structure

	4 USB OTG core
	4.1 USB OTG full speed core
	4.1.1 OTG_FS interface main features

	4.2 USB OTG high speed core

	5 USB OTG low level driver
	5.1 USB OTG low level driver architecture
	Figure 3. Driver architecture overview

	5.2 USB OTG low level driver files
	Figure 4. Driver files
	Table 2. USB OTG low level file descriptions

	5.3 USB OTG low level driver configuration
	Table 3. Core configurations

	5.4 USB OTG driver programming manual
	5.4.1 Low level driver structures
	5.4.2 Programming considerations when using internal DMA
	Figure 5. USB core structure
	Figure 6. C compiler-dependant keywords (defined in usb_conf.h file)

	5.4.3 Selecting USB physical interface
	5.4.4 Programming device drivers
	5.4.5 Programming host drivers


	6 USB device library
	6.1 USB device library overview
	Figure 7. USB device library architecture

	6.2 USB device library files
	Figure 8. USB device library file structure

	6.3 USB device library description
	6.3.1 USB device library flow
	Table 4. Standard requests

	6.3.2 USB device library process
	Figure 9. USB device library process flowchart

	6.3.3 USB device data flow
	Figure 10. USB device data flow

	6.3.4 USB device library configuration
	6.3.5 USB data transfer handling
	6.3.6 Using the multi-packet feature
	6.3.7 USB control functions
	6.3.8 FIFO size customization

	6.4 USB device library functions
	Table 5. USB device core files
	Table 6. usbd_core (.c, .h) files
	Table 7. usbd_ioreq (.c, .h) files
	Table 8. usbd_req (.c, .h)

	6.5 USB device class interface
	6.6 USB device user interface
	6.7 USB device classes
	Table 9. USB device class files
	6.7.1 HID class
	Table 10. usbd_hid_core.c,h files

	6.7.2 Mass storage class
	Figure 11. BOT Protocol architecture
	Table 11. SCSI commands
	Table 12. usbd_msc_core (.c, .h) files
	Table 13. usbd_msc_bot (.c, .h) files
	Table 14. usbd_msc_scsi (.c, .h)
	Table 15. Functions

	6.7.3 Device firmware upgrade (DFU) class
	Table 16. DFU states
	Figure 12. DFU Interface state transitions diagram
	Table 17. Supported requests
	Table 18. usbd_dfu_core (.c, .h) files
	Table 19. usbd_dfu_mal (.c, .h) files
	Table 20. usbd_flash_if (.c,.h) files

	6.7.4 Audio class
	Table 21. Audio control requests
	Table 22. usbd_audio_core (.c, .h) files
	Table 23. usbd_audio_xxx_if (.c, .h) files
	Table 24. Audio player states

	6.7.5 Communication device class (CDC)
	Table 25. usbd_cdc_core (.c, .h) files
	Table 26. Configurable CDC parameters
	Table 27. usbd_cdc_xxx_if (.c, .h) files
	Table 28. Variables used by usbd_cdc_xxx_if.c/.h

	6.7.6 Adding a custom class

	6.8 Application layer description
	Figure 13. Folder organization

	6.9 Starting the USB device library
	Figure 14. Example of the define for core device handles
	Figure 15. USBD_Init () function example

	6.10 USB device examples
	6.10.1 USB mass storage device example
	Figure 16. Power-on display message
	Figure 17. Cable connected display message

	6.10.2 USB human interface device example
	Figure 18. USB HID power-on display message
	Figure 19. USB HID cable connected display message

	6.10.3 Dual core USB device example
	Figure 20. Dual core USB device example
	Figure 21. USB dual device power-on display message
	Figure 22. USB dual device cable connected display message

	6.10.4 USB device firmware upgrade example
	Figure 23. USB device firmware upgrade power-on display message
	Figure 24. USB device firmware upgrade cable connected display message

	6.10.5 USB virtual com port (VCP) device example
	Figure 25. USB virtual com port power-on display message
	Figure 26. USB virtual com port cable connected display message
	Figure 27. Configuration 1a: Two different hosts for USB and USART
	Figure 28. Configuration 1b: One single Host for USB and USART
	Figure 29. Configuration 2: Loopback mode (for test purposes)

	6.10.6 USB audio device example
	Figure 30. USB audio device power-on display message
	Figure 31. USB audio device cable connected display message

	6.10.7 Known limitations


	7 USB host library
	7.1 Overview
	Figure 32. USB host library overview

	7.2 USB host library files
	Figure 33. USB host library file tree structure

	7.3 USB host library description
	7.3.1 Host core state machine
	Figure 34. USB host library state machine

	7.3.2 Device enumeration
	Figure 35. Device enumeration steps

	7.3.3 Control transfer state machine
	7.3.4 USB I/O request module
	7.3.5 Host channel control module
	7.3.6 USB host library configuration

	7.4 USB host library functions
	Table 29. USB host core files
	Table 30. USB I/O request module
	Table 31. Host channel control module
	Table 32. Standard request module

	7.5 USB host class interface
	7.6 USB host classes
	7.6.1 Mass storage class
	Table 33. Modules
	Figure 36. Block diagram organization of the MSC driver
	Table 34. MSC core module description
	Table 35. MSC BOT module description
	Table 36. MSC SCSI commands
	Table 37. MSC file system interface functions
	Table 38. FatFS API commands

	7.6.2 HID class
	Table 39. HID class modules
	Table 40. MSC core module functions
	Table 41. Mouse and keyboard initialization & HID report decoding functions


	7.7 USB host user interface
	7.7.1 Library user API
	7.7.2 User callback functions
	7.7.3 Class callback functions

	7.8 Application layer description
	Figure 37. Folder organization

	7.9 Starting the USB host library
	7.10 USB host examples
	7.10.1 USB mass storage host example
	Figure 38. USB mass storage host display message
	Figure 39. USB mass storage explorer display message
	Figure 40. USB mass storage explorer display message (last screen)
	Figure 41. USB mass storage write file display message
	Figure 42. USB mass storage slideshow example

	7.10.2 USB HID Host example
	Figure 43. USB HID Host connected display message
	Figure 44. USB HID Host user key message
	Figure 45. USB HID Host text example message

	7.10.3 USB dual core host example
	Figure 46. USB dual core host example
	Figure 47. Menu structure

	7.10.4 USB manual dual role device example
	Figure 48. USB Manual DRD example
	Figure 49. Menu structure



	8 Frequently-asked questions
	9 Troubleshooting
	10 Revision history
	Table 42. Document revision history


