- Ultra-Fast Operation . . . 10 ns (typ)
- Low Positive Supply Current 12.7 mA (Typ)
- Operates From a Single 5-V Supply or From a Split ±5-V Supply
- Complementary Outputs
- Input Common-Mode Voltage Includes Negative Rail
- Low Offset Voltage
- No Minimum Slew Rate Requirement
- Output Latch Capability
- Functional Replacement to the LT1116

description

The TL3116 is an ultra-fast comparator designed to interface directly to TTL logic while operating from either a single 5-V power supply or dual ±5-V supplies. The input common-mode voltage extends to the negative rail for ground sensing applications. It features extremely tight offset voltage and high gain for precision applications. It has complementary outputs that can be latched using the LATCH ENABLE terminal. Figure 1 shows the positive supply current of the comparator. The TL3116 only requires 12.7 mA (typical) to achieve a propagation delay of 10 ns.

The TL3116 is a pin-for-pin functional replacement for the LT1116 comparator, offering high-speed operation but consuming much less power.

AVAILABLE OPTIONS

	PACKAGED	CHIP				
TA	TA SMALL OUTLINET (D)		FORM‡ (Y)			
0°C to 70°C	TL3116CD	TL3116CPWLE	TL3116Y			
-40°C to 85°C	TL3116ID	TL3116IPWLE	_			

[†]The PW packages are available left-ended taped and reeled only.

D AND PW PACKAGE (TOP VIEW)

symbol (each comparator)

POSITIVE SUPPLY CURRENT vs FREE-AIR TEMPERATURE

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[‡] Chip forms are tested at $T_A = 25$ °C only.

TL3116Y chip information

This chip, when properly assembled, displays characteristics similar to the TL3116C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

COMPONENT COUNT								
Bipolars	53							
MOSFETs	49							
Resistors	46							
Capacitors	14							

TL3116, TL3116Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS

SLCS132C - MARCH 1997 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	– 7 V to 7 V
Differential input voltage, V _{ID} (see Note 2)	
Input voltage range, V _I	
Input voltage, V _I (LATCH ENABLE)	7 V
Output current, I _O	±20 mA
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	40°C to 85°C
Storage temperature range, T _{stq}	– 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.

2. Differential voltages are at IN+ with respect to IN-.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW
PW	525 mW	4.2 mW/°C	336 mW

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

TL3116, TL3116Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS

SLCS132C - MARCH 1997 - REVISED MAY 1997

electrical characteristics at specified operating free-air temperature, V_{DD} = ± 5 V, V_{LE} = 0 (unless otherwise noted)

242445752	TEGT COMPLETIONS.		TL3116C			LINUT		
PARAMETER	TEST CONDITIONS!	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
lanut effect veltere	T _A = 25°C		0.5	3		0.5	3	\/
input offset voltage	T _A = full range			3.5			3.5	mV
Temperature coefficient of input offset voltage			-2.5			-2.8		μV/°C
	T _A = 25°C		0.1	0.2		0.1	0.2	
Input offset current	T _A = full range			0.3			0.35	μΑ
	T _A = 25°C		0.7	1.1		0.7	1.1	
Input bias current	T _A = full range			1.2			1.5	μΑ
Common-mode input	V _{DD} = ±5 V	-5		2.5	-5		2.5	
voltage range	V _{DD} = 5 V	0		2.5	0		2.5	V
Common-mode rejection ratio	-5 ≤ V _{IC} ≤ 2.5 V	75	100		75	100		dB
Supply-voltage rejection ratio	Positive supply: $4.6 \text{ V} \le +\text{V}_{DD} \le 5.4 \text{ V}$, $T_A = 25^{\circ}\text{C}$	60	80		60	80		
	Negative supply: $-7 \text{ V} \le -\text{V}_{DD} \le -2 \text{ V}$, $T_A = 25^{\circ}\text{C}$	80	100		80	100		dB
Landard advantage	$I_{(sink)} = 4 \text{ mA}, V+ \leq 4.6 \text{ V},$ $T_A = 25^{\circ}\text{C}$		400	600		400	600	
Low-level output voltage	$I_{(sink)}$ = 10 mA, V+ \leq 4.6 V, T_A = 25°C		750			750		mV
I Park I south out out on the con-	$V+ \leq 4.6 \text{ V}, \\ T_A = 25^{\circ}\text{C}$ $I_O = 1 \text{ mA},$	3.6	3.9		3.6	3.9		.,
High-level output voltage	$V+ \leq 4.6 \ V, \\ T_{\mbox{\scriptsize A}} = 25 \mbox{\rm °C} \label{eq:total one of the constraint}$	3.4	3.8		3.4	3.8		V
Positive supply current	T. Gilliana and		12.7	14.7		12.7	15	4
Negative supply current	I _A = full range	-2.6			-3			mA
Low-level input voltage (LATCH ENABLE)				0.8			0.8	٧
High-level input voltage (LATCH ENABLE)		2			2			V
Low-level input current	V _{LE} = 0		0	1		0	1	μΑ
(LATCH ENABLE)	V _{LE} = 2 V		24	39		24	45	μΑ
	of input offset voltage Input offset current Input bias current Common-mode input voltage range Common-mode rejection ratio Supply-voltage rejection ratio Low-level output voltage Positive supply current Negative supply current Low-level input voltage (LATCH ENABLE) High-level input current	$ \begin{array}{c} \text{Input offset voltage} & \begin{array}{c} T_{A} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \end{array} \\ \hline \text{Temperature coefficient of input offset voltage} \\ \hline \text{Input offset current} & \begin{array}{c} T_{A} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \end{array} \\ \hline \text{Input offset current} & \begin{array}{c} T_{A} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \end{array} \\ \hline \text{Input bias current} & \begin{array}{c} T_{A} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \end{array} \\ \hline \text{Common-mode input voltage range} & \begin{array}{c} V_{DD} = \pm 5 \text{ V} \\ V_{DD} = 5 \text{ V} \end{array} \\ \hline \text{Common-mode rejection ratio} & \begin{array}{c} -5 \leq \text{V}_{ C} \leq 2.5 \text{ V} \end{array} \\ \hline \text{Supply-voltage rejection ratio} & \begin{array}{c} P_{\text{Ositive supply: } 4.6 \text{ V} \leq +\text{V}_{DD} \leq 5.4 \text{ V},} \\ T_{A} = 25^{\circ}\text{C} \\ \hline \text{Negative supply: } -7 \text{ V} \leq -\text{V}_{DD} \leq -2 \text{ V},} \\ T_{A} = 25^{\circ}\text{C} \\ \hline \text{I(sink) = 10 mA,} & \text{V+} \leq 4.6 \text{ V},} \\ T_{A} = 25^{\circ}\text{C} \\ \hline \text{I(sink) = 10 mA,} & \text{V+} \leq 4.6 \text{ V},} \\ T_{A} = 25^{\circ}\text{C} \\ \hline \end{array} \\ \hline \text{Positive supply current} \\ \hline \text{Negative supply current} \\ \hline \text{Negative supply current} \\ \hline \text{Low-level input voltage} \\ \hline \text{I(ATCH ENABLE)} \\ \hline \text{Low-level input current} \\ \hline \text{Low-level input current} \\ \hline \text{Low-level input current} \\ \hline \end{array} \\ \hline \text{VLE = 0} \\ \hline \end{array}$	$ \begin{array}{c} \text{Input offset voltage} \\ \text{Ta} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \\ \\ \text{Input offset current} \\ \\ \text{Input offset current} \\ \\ \text{Input offset current} \\ \\ \text{Input bias current} \\ \\ \text{Input bias current} \\ \\ \text{Input bias current} \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \\ \\ \text{Common-mode input voltage range} \\ \\ \text{Common-mode rejection ratio} \\ \\ \text{Common-mode rejection ratio} \\ \\ \text{Supply-voltage rejection ratio} \\ \\ \text{Supply-voltage rejection ratio} \\ \\ \text{Dositive supply: } -5 \leq V_{IC} \leq 2.5 \text{ V} \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{Negative supply: } -7 \text{ V} \leq -V_{DD} \leq -2 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{I(sink)} = 4 \text{ mA}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{I(sink)} = 10 \text{ mA}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \\ \\ \text$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

[†] Full range for the TL3116C is $T_A = 0^{\circ}$ C to 70° C. Full range for the TL3116I is $T_A = -40^{\circ}$ C to 85° C. ‡ All typical values are measures with $T_A = 25^{\circ}$ C.

switching characteristics, $V_{DD} = \pm 5 \text{ V}$, $V_{LE} = 0$

PARAMETER		7507.001	TL3116C			TL3116I			LINUT	
		TEST CON	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
+		$\Delta V_{\parallel} = 100 \text{ mV},$	T _A = 25°C		9.9	12		9.9	12	
	Propagation delay time‡	$V_{OD} = 5 \text{ mV}$	T _A = full range		9.9	14		9.9	15	
^t pd1		$\Delta V_{I} = 100 \text{ mV},$	T _A = 25°C		8.2	10.3		8.2	10.3	ns
		$V_{OD} = 20 \text{ mV}$	T _A = full range		8.2	12.7		8.2	13.7	
t _{sk(p)}	Pulse skew ($ t_{pd+} - t_{pd-} $)	$\Delta V_I = 100 \text{ mV},$ $T_A = 25^{\circ}\text{C}$	$V_{OD} = 5 \text{ mV},$		0.5			0.5		ns
t _{su}	Setup time, LATCH ENABLE				3.4			3.4		ns

[†] Full range for the TL3116C is 0°C to 70°C. Full range for the TL3116I is –40°C to 85°C.

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
		vs Input voltage	2
ICC	Positive supply current	vs Frequency	3
		vs Free-air temperature	4
ICC	Negative supply current	vs Free-air temperature	5
		vs Overdrive voltage	6
	Propagation delay time	vs Supply voltage	7
t _{pd}		vs Input impedance	8
ļ ·		vs Load capacitance	9
		vs Free-air temperature	10
VIС	Common-mode input voltage	vs Free-air temperature	11
\vee_{IT}	Input threshold voltage (LATCH ENABLE)	vs Free-air temperature	12
,,	0	vs Output source current	13
VO	Output voltage	vs Output sink current	14
lį	Input current (LATCH ENABLE)	vs Input voltage	15

[‡] t_{pd1} cannot be measured in automatic handling equipment with low values of overdrive. The TL3116 is 100% tested with a 1-V step and 500-mV overdrive at T_A = 25°C only. Correlation tests have shown that t_{pd1} limits given can be ensured with this test, if additional dc tests are performed to ensure that all internal bias conditions are correct. For low overdrive conditions, V_{OS} is added to the overdrive.

20

18

16

14

12

10

8

2

0

ICC - Positive Supply Current - mA

TYPICAL CHARACTERISTICS

8

POSITIVE SUPPLY CURRENT INPUT VOLTAGE $V_{CC} = \pm 5 V$ T_A = 25°C T_A = 85°C T_A = 25°C $T_A = -40^{\circ}C$

V_I - Input Voltage - V

TYPICAL CHARACTERISTICS

Figure 9

Figure 8

TYPICAL CHARACTERISTICS

PROPAGATION DELAY TIME FREE-AIR TEMPERATURE 25 $V_{CC} = \pm 5 V$ tpd - Propagation Delay Time - ns 20 15 Rising Edge 10 **Falling Edge** 5 75 100 125 - 50 - 25 50 T_A - Free-Air Temperature - °C

INPUT THRESHOLD VOLTAGE (LATCH ENABLE)

Figure 10

TYPICAL CHARACTERISTICS

10-Jun-2014

PACKAGING INFORMATION

Orderable Device		Package Type	Package Drawing	Pins	Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
TL3116CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	(6) CU NIPDAU	(3) Level-1-260C-UNLIM	0 to 70	(4/5) 3116C	Samples
TL3116CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	3116C	Samples
TL3116CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	3116C	Samples
TL3116CPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T3116	Samples
TL3116CPWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI			
TL3116CPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T3116	Samples
TL3116ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	3116I	Samples
TL3116IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	31161	Samples
TL3116IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	31161	Samples
TL3116IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	31161	Samples
TL3116IPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	Z3116	Samples
TL3116IPWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI			
TL3116IPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	Z3116	Samples
TL3116IPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	Z3116	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

10-Jun-2014

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 29-Apr-2016

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL3116CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL3116CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TL3116IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL3116IPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

www.ti.com 29-Apr-2016

*All dimensions are nominal

7 til difficilerene are fremmar							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL3116CDR	SOIC	D	8	2500	367.0	367.0	38.0
TL3116CPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TL3116IDR	SOIC	D	8	2500	367.0	367.0	38.0
TL3116IPWR	TSSOP	PW	8	2000	367.0	367.0	35.0

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity