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We have developed an efficient and reliable protocol for the calculation of pKa values in aqueous solution
from density functional calculations. We establish a standard linear regression fit using only calculated energies
of deprotonation and experimental pKa values; all other factors, including most entropic effects, are absorbed
into the fitting constants. In this article we fit a small training set of 34 experimentally well-characterized
molecules to determine the best level of theory among those tested (i.e., the optimum compromise between
efficiency and accuracy for the basis set, the exchange-correlation functional, the (continuum) solvation
model and the level of geometry optimization). Our main findings are that a relatively modest basis set (6-
311+G**) suffices for the calculation of the energy differences, with an even small basis set (3-21G*) sufficient
for the preceding geometry optimization. Using a solvation model (COSMO in our case) throughout is essential
to achieve reliable results. The exchange-correlation functional plays only a modest role; in particular, pure
DFT functionals that allow the efficient calculation of the Coulomb term are perfectly adequate. The final
protocol will be applied subsequently to data sets much larger than commonly used in such studies.

1. Introduction

The pKa value plays a very significant role in many aspects
of drug absorption, distribution, metabolism, and excretion
(ADME). The pKa is defined as -log Ka, where Ka is the
equilibrium constant for the deprotonation reaction. The pKa

and pH values determine the relative concentration of protonated
and deprotonated forms through the Henderson-Hasselbalch
equation:1 log([unprotonated])/([protonated]) ) pH - pKa. Most
drugs contain at least one site that is able to protonate or
deprotonate reversibly. If the pH is higher than the pKa, the
site is mostly deprotonated; otherwise it is mostly protonated.
The ratio of the protonated and deprotonated forms of a
molecule largely determines its binding and transport properties.
A drug commonly has to pass through at least one biomembrane
via passive diffusion or by carrier-mediated uptake before it
can produce any biological effect. Only neutral species can
easily penetrate the cell membrane because the lipid bilayers
in the cell wall have very low permeability for ions and most
polar molecules. This is the main reason for the importance of
a drug’s pKa value in pharmacokinetics. About 63% of drug
molecules listed in the World Drug Index2 can be ionized
between pH 2 and 12.3

Under equilibrium conditions, the pKa is related to the Gibbs
free energy of protonation ∆Gaq through

pKa ) ∆Gaq/(RT ln 10) ) ∆Gaq/(2.303RT) (1)

where R is the gas constant and T is the absolute temperature.
The computational determination of accurate pKa values is very
demanding, as an error of only 1.36 kcal/mol in ∆Gaq is
equivalent to a unit difference in pKa value at room temperature.

Of course, the pKa is not the only factor that influences the
biological activity of a drug candidate. Other important phys-

icochemical properties include solubility in aqueous and lipid
environments and the partition coefficient between the two,
structural effects such as resonance, induction, redox potentials,
bond types and isomerism, as well as specific characteristics
such as molecular size and shape, and stereochemistry. However,
the pKa is probably the most important factor and is often used
as a preliminary measure to select suitable drug candidates.

A fully first-principles calculation of pKa values in the gas
phase requires a computationally demanding level of theory
together with a complete thermodynamic analysis, including
computation of zero-point energies and entropy effects (see for
example Topol et al.4). Such calculations require large basis
sets and a high level of electron correlation.5 Most early and
virtually all high-accuracy solution studies utilize a thermody-
namic cycle that corrects the gas-phase deprotonation energy
with the solvation energies of the participating species. One
motivation for this is that high-accuracy calculations are easier
to carry out in the gas phase. However, we have found, in
agreement with others,6,7 that the detour through the gas phase
is counterproductive. At the computational levels that are
routinely applicable today, the dominant source of error is not
the gas-phase deprotonation energy. Any gain from improved
accuracy in gas-phase calculations is outweighed by errors
caused by geometry and conformational differences between
the gas and the solution phase. Therefore, as will be seen, we
calculate our energy differences directly in the solvated model.

A fully first principles calculation is not appropriate if the
aim is to achieve high throughput, for example, the initial
screening of a large drug candidate database. Because of the
very high cost of rigorous thermodynamic simulations, solvent
effects must be approximated by a continuous solvation model.
The calculation of zero-point energies and entropy terms is also
too expensive computationally. For this reason, we, like many
researchers before us, take only the dominant term, the energy
difference between the protonated and deprotonated forms, from
quantum chemical calculations. Replacing ∆G in eq 1 by the
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computed enthalpy difference ∆H assumes that entropic effects
cancel, and that solvation is adequately described by the selected
solvation model. None of these conditions hold sufficiently to
produce reliable results. In addition, the direct use of eq 1
requires the solvation energy of the proton which is still not
well established.8 One generally utilized solution to these
problems (see, for example, refs 6, 7, and 9) is to approximate
the pKa values by a linear function of ∆H:

pKa(f) ) Rf∆H + �f (2)

where f denotes a class of ionizable compounds, for instance
carboxylic acids. ∆H for the acid HA is calculated as E(Aaq

-)
- E(HAaq) at an appropriate theoretical level. The empirical
parameters Rf and �f are determined through a least-squares fit
to accurately known experimental pKa values for representative
molecules in the class f. These empirical parameters can to a
certain extent absorb systematic errors of the quantum chemical
and the solvation model, as well as entropic effects. We hope
to develop a number of parameter sets (i.e., values of Rf and
�f) for various functional groups (e.g., carboxylic acids, alcohols,
amines, etc.) so that pKa values can be rapidly and accurately
estimated from a couple of relatively straightforward energy
calculations.

On the basis of a number of preliminary calculations and
literature evaluation, density functional theory (DFT) was
selected as the main calculational method. DFT provides a good
compromise between accuracy and computational speed. In this
work we have addressed several questions:

1. Is pure DFT capable of yielding the same degree of
accuracy as hybrid DFT?

2. What is the smallest basis set size required to yield
converged relative energies?

3. Is it important to optimize geometries at the DFT level or
can we use molecular mechanics geometries?

4. If we need to optimize geometries, what is the smallest
basis set that we can use and still get acceptable results?

5. Is it essential to optimize the geometries using a solvation
model (specifically the COSMO continuum solvation model10)?

2. Computational Methods

All calculations were done with the PQS program package,11

initially on a fairly old home-built PC cluster (800 MHz PIV
Xeon processors) and subsequently on the University of
Arkansas Red Diamond supercomputer.12

We selected a set of 34 small molecules for which the pKa

values were experimentally well established. These systems,
together with their pKa values and references, are given in Table
1. Despite the huge number of papers published annually on
pKa’s, most experimental values quoted are derived from two
large IUPAC compilations published in the 1960s,13,14 now over
forty years ago. There are also supplements15 and later compila-
tions, e.g., from 197916 and 1999,17 although in the latter no
references are provided, so it is not clear how old the data
reported actually are. In many cases, these books list more than
one experimental reference for a particular pKa value, and in
every one of the 34 molecules we selected there are at least
two, and often more, values given that lie within 0.1 pKa units
of each other. In some cases we have supplemented the values
reported with more recent experimental data.

The molecules were built at first using the PCModel18 and
later the PQSMol model builder11 and preoptimized using one
of the built-in molecular mechanics force fields. (In the case of
PQSMol this was principally Sybyl_5.2.19) On this training set
we carried out the following series of calculations:

(1) DFT using either (a) the B3LYP20 or (b) OLYP21

functional; (2) gas-phase or COSMO (solvation) calculations;
(3) geometries either (a) taken directly as constructed, i.e.,
optimized using molecular mechanics, or optimized with (b)
the 3-21G basis set,22 (c) the 3-21G(*) basis set,23 (d) the 6-31G*
basis set,24 or (e) the 6-311+G** basis set;25 (4) energy
differences computed using (a) the 6-31+G* basis, (b) the
6-311+G** basis set, or (c) the much larger 6-311++G(3df,3pd)
basis set.26 All possible combinations of (1) DFT functional,
(2) gas-phase or COSMO, (3) optimized geometry, and (4) final
single-point energy were utilized, for a total of 80 sets of
calculations.

There are now a huge number of different DFT functionals;
we selected B3LYP as perhaps the most popular and widely
used, and OLYP as a general high quality nonhybrid functional
known to give good results for organic molecules27 (where it
typically performs far better than the more popular BLYP
functional28).

The compounds in our training set were divided into four
separate data sets, (1) carboxylic acids, (2) alcohols and phenols,
(3) pyridines, and (4) anilines and amines, and each set was
fitted separately. Final energy differences were plotted against
experimental pKa values and the best least-squares linear fit was
obtained. Full tables showing our computed pKa values and the
standard and mean absolute deviations are provided as Sup-
porting Information. Only the mean absolute deviations for
selected fits are shown here graphically in Figures 1-4.

The smallest of our four data sets contains only seven
compounds. This, of course, is nowhere near enough to derive
a pair of reliable Rf and �f values applicable to all compounds
in that class. But that is not the aim here. In this initial paper
we are simply selecting the best theoretical approach among
those that we have chosen to test. Once the theoretical approach
has been determined, it will be used to fit much larger data sets
and it is these fits that will form the basis of our fast throughput
analysis.

In conformationally flexible molecules, several low-energy
conformers exist. The correct way of calculating the electronic
part of the free energy is to include all low-lying conformers in
the thermodynamic averaging. We chose to avoid this route and
considered only the energy of the lowest conformer. In a typical
worst case, when the ion has only one dominant conformer but
the neutral molecule is chiral and has two conformers of equal
energy, this approximation leads to an error of log 2 ) 0.301
in the pKa value, assuming that the slope (the R fitting parameter)
attains the theoretical value of (RT ln 10)-1 ) 0.734 mol/kcal.
In reality, the fitted slopes are significantly smaller, typically
about 0.3 mol/kcal, and thus the error in the predicted pKa is
about 0.12 units. As this is less than the expected accuracy of
our method, we chose to ignore it. However, it is not expected
to change our final recommendation for the method. (We note
that one of the most difficult problems we have encountered is
the determination of the minimum energy conformer for larger
molecules. In our opinion, previous workers, dealing mainly
with small, rigid molecules, have not fully appreciated this
problem.)

3. Results and Discussion

The first things to note are that pKa values obtained with raw,
unoptimized geometries (i.e., direct from the force field
optimizations; Figure 1) are noticeably worse than values
obtained using optimized geometries, and in the latter case pKa’s
obtained using the COSMO solvation model, as noted in the
Introduction, are in turn noticeably better than pKa’s obtained
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using gas-phase (free) energy differences. We can thus con-
centrate on methods involving optimized geometries with
COSMO and select the best overall method that includes these
two options.

Of the three basis sets used to obtain the final single-point
energies, 6-31+G*, 6-311+G**, and 6-311++G(3df,3pd), it

TABLE 1: Training Set and Reference pKa Values

molecule pKa reference values
Anilines

aniline 4.61 4.63, 4.605, 4.606, 4.620;14 4.577, 4.596, 4.56, 4.58;15 4.6145

3-chloroaniline 3.52 3.46, 3.52;14 3.521, 3.52;15 3.5217

3-(methylsulfonyl)aniline 2.58 2.58, 2.56114

4-cyanoaniline 1.74 1.75, 1.739;14 1.7115

4-methoxyaniline 5.31 5.31, 5.34, 5.3, 5.29;14 5.3617

4-nitroaniline 1.00 1.00, 1.02, 0.99;14 1.019, 0.97,1.00;15 1.0117

Amines
methylamine 10.67 10.657, 10.68, 10.67, 10.6214

dimethylamine 10.77 10.73, 10.81, 10.7714

trimethylamine 9.81 9.81, 9.80, 9.752;14 9.801, 9.987;15 9.817

guanidine 13.60 13.59, 13.614

piperidine 11.11 11.22, 11.123, 11.11, 11.0614

Pyridines
pyridine 5.25 5.25, 5.21, 5.18;14 5.229, 5.21, 5.198, 5.22;15 5.3145

2-methylpyridine 5.97 5.94, 5.97;14 5.957, 6.0615

3,4-dimethylpyridine 6.48 6.46, 6.52;14 6.48;15 6.4717

2,4,6-trimethylpyridine 7.43 7.43, 7.48;14 7.25;15 7.4317

3-cyanopyridine 1.39 1.39, 1.36;14 1.3515 1.4517

3-fluoropyridine 2.97 2.97, 3.0;14 2.9717

4-methoxypyridine 6.55 6.47, 6.58, 6.55;14 6.5815

Phenols
phenol 9.98 9.98, 9.95, 9.998, 9.991;13 9.994, 9.97;16 9.8146

2-methylphenol 10.32 10.28, 10.15;13 10.22, 10.29, 10.3216

2-nitrophenol 7.22 7.216, 7.23, 7.234;13 7.230, 7.22;16 7.2146

3-nitrophenol 8.36 8.39, 8.38;13 8.355, 8.36;16 8.2946

2,4-dinitrophenol 4.12 4.09, 4.11, 4.06, 4.02;13 4.10, 4.12;16 4.1445

2,5-dinitrophenol 5.20 5.216, 5.31513 5.21, 5.19, 5.20;16 5.2245

2,6-dinitrophenol 3.73 3.799, 3.710, 3.712, 3.713;13 3.695, 3.7316

Alcohols
methanol 15.54 15.54;13 15.516

trifluoroethanol 12.37 12.43, 12.3713

Carboxylic Acids
formic acid 3.76 3.74, 3.75;13 3.76;47 3.8148

acetic acid 4.76 4.756, 4.754, 4.755;13 4.76;46 4.7448

cyanoacetic acid 2.47 2.45, 2.46, 2.58, 2.47;13 2.471, 2.5016

oxalic acid 1.25 1.23, 1.27, 1.25, 1.34, 1.30;13 1.25216

butanoic acid 4.82 4.82;13 4.83, 4.80;16 4.7949

benzoic acid 4.19 4.20, 4.18, 4.21;13 4.11;46 4.18;50 4.1951

4-nitrobenzoic acid 3.44 3.44, 3.43;13 3.426, 3.422, 3.48;16 3.7446

Figure 1. Mean absolute deviations from experiment for pKa values
computed at the OLYP/6-311+G**//OLYP/3-21G(d) level: (a) entirely
in solution (via COSMO); (b) final single-point energy in solution using
geometries optimized in the gas phase; (c) entirely in the gas phase;
(d) for carboxylic acids, phenols, and alcohols in solution using
unoptimized (i.e., molecular mechanics) geometries.

Figure 2. Mean absolute deviations from experiment for pKa values
computed at the single-point OLYP level using the OLYP/3-21G(d)
geometry optimized in solution (via COSMO) with the (a) 6-31+G*,
(b) 6-311+G**, and (c) 6-311++G(3df,3pd) basis sets.
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is clear that, despite comments to the contrary in the literature
for methods that attempt to compute absolute pKa values,5,29

there is nothing to be gained from using the largest basis set, at
least at the DFT level. Neither the mean absolute deviation nor
the standard deviation in the predicted pKa values are any better
with the 6-311++G(3df,3pd) basis than with the much smaller
6-311+G** basis, and in several cases they are noticeably
worse.

The situation is less clear-cut when it comes to selecting the
basis set used to optimize the molecular geometry, but within
each set of single-point energies (6-31+G* and 6-311+G**)
there is no oVerall accuracy advantage in choosing a larger basis
to optimize the geometry than a smaller one; sometimes the
larger basis is best, sometimes the smaller (see Figure 3). Given
our goal of fast throughput, it is clearly advantageous to optimize
geometries using a smaller basis because of the significant
computational savings that result; consequently, we propose to
use the smallest of our chosen basis sets, 3-21G(d), for this
purpose. The geometries of compounds containing the more
electronegative first-row elements (N, O, and F) improve
significantly in general if d functions are added to the basis set,
giving the 3-21G(*) basis,23 because of a better description of
the lone pairs. However, as our data show, this does not result
in a better prediction of the pKa.

Overall, we favor the larger 6-311+G** basis over 6-31+G*
for the final single-point energy calculations. The mean absolute
and standard deviations are at least as good and often better
than with the smaller basis in every case (Figure 2).

There is little difference between the two density functionals,
OLYP and B3LYP as far as the final pKa values are concerned
(Figure 4), so (as was the case with the basis sets) the least
expensive method computationally is favored. OLYP, being a
“pure” density functional, can be significantly less expensive
than B3LYP, as there is no need to compute the Hartree-Fock
exchange. For larger systems and basis sets, the advantage is
even more significant because a pure density functional like
OLYP allows the use of very efficient algorithms for the
Coulomb term, such as the Fourier Transform Coulomb (FTC)
method.30

Our final method is thus OLYP/6-311+G**//3-21G(d) with
the COSMO solvation model (using water as the solvent). We
are going to use this method to derive linear regression pKa

equations for over 1000 different molecules. To the best of our
knowledge, this is one of the biggest pKa data sets ever fitted.
For the reader’s information, we show the linear regression fits
we obtained for the final selected method in Figure 5; the results
are summarized in detail in Table 2.

4. Comparison with Prior work

In this section we compare our approach and results with
those of other groups who also used ab initio methods.

In a recent paper Sadlej-Sosnowska compared a number
of different methods for calculating absolute pKa values for
nine small, rigid molecules, looking at factors such as the
choice of thermodynamic cycle, level of theory, basis set,
(continuum) solvation model and, in the latter case, the size
of the solvent cavity.31 One perhaps surprising finding was
that the best results were obtained at the Hartree-Fock level.
This confirms the results of Liptak et al.32 for substituted
phenols and Murlowska and Sadlej-Sosnowska33 for sub-
stituted tetrazoles. It was also noted by Barone and Cossi,
who considered it as being due to underestimation of the
solvent reaction field at correlated levels.34 The good
performance of the Hartree-Fock method is less surprising

Figure 3. Mean absolute deviations from experiment for pKa values
computed at the single-point OLYP/6-311+G** level using geometries
optimized in solution (via COSMO) with the (a) 3-21G(d), (b) 3-21G(*),
(c) 6-31G*, and (d) 6-311+G** basis sets.

Figure 4. Mean absolute deviations from experiment for pKa values
computed at the single-point DFT level using 3-21G(d) geometries
optimized in solution (via COSMO) followed by single-point DFT
energies using the 6-311+G** basis set with the (a) OLYP and (b)
B3LYP functionals.

Figure 5. Linear regression plots for the final method (OLYP/6-
311+G**//3-21G(d); COSMO solvation model with water as
solvent).
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than it appears, given that the number of electron pairs does
not change in a deprotonation reaction.

We did not include the Hartree-Fock method in our initial
comparison, as it suffers from the same disadvantage as hybrid
DFT methods, i.e., the need to calculate the exact exchange,
and also because molecular geometries computed at this level
of theory are typically noticeably inferior to DFT geometries.
However, in view of the above results, we decided to carry out
a complete set of Hartree-Fock calculations on all 34 molecules
in our training set at HF/6-311+G**//3-21G(d), using the
COSMO solvation model. This is identical to our recommended
model except that OLYP has been replaced by HF as the
theoretical method.

The Hartree-Fock results were indeed quite good, with mean
absolute deviations in the fitted pKa values of 0.15 (carboxylic
acids), 0.18 (alcohols/phenols), 0.36 (amines/anilines), and 0.10
(pyridines). These values are similar to the corresponding OLYP
values (see Figure 1) except for the pyridines where the
Hartree-Fock results are markedly worse. Given the similar
accuracy and the potential cost savings for larger systems, there
is no reason for us to recommend Hartree-Fock over OLYP.
(Details of our calculations are provided in the Supporting
Information.)

Further attempts to calculate absolute pKa values will not be
reviewed in detail. Recent work, in particular that of Shields
and co-workers32,35 and Yates and co-workers5 has established
that it is possible to calculate accurate pKa’s purely from first
principles. However, these high-level calculations are not
suitable for mass screening of a large number of molecules, for
instance putative drug candidates. At lower levels of theory,
large errors are obtained. For instance, the calculated absolute
pKa values in ref 31 exhibit mean absolute errors ranging up to
7 pKa units. Errors of this magnitude are not atypical when
attempting to calculate absolute pKa values36,37 and support the
conventional wisdom, noted in the Introduction, that large basis
sets and high levels of theory are required to get even close to
experiment (see, e.g., ref 35).

The studies most comparable with ours are those of Klamt
et al.6 and Adam.7 The approach of Klamt and co-workers differs
from ours in two main ways. First they use electronic ∆G in
their fitting equation and not ∆Emin as we do. (Vibrational and
rotational contributions to the free energy are neglected in ref
6.) Second, they use the proprietary COSMO-RS method
(COSMO for real solvents),38 which involves optimization using
basic COSMO in the conductor limit (i.e., infinite dielectric
constant), followed by a modeling of the deviations of a real
solvent (e.g., water) compared to an ideal conductor using
pairwise interacting molecular surfaces, whereas we use the
basic COSMO with water as solvent. Their database includes
64 acids (with acidic hydrogens at oxygen and nitrogen only),
fitting all compounds with a single linear-regression equation.
The fitting has a maximum error of 1.26 pKa units and a mean
unsigned error of 0.37 showing the effectiveness of this kind
of approach.

Adam7 approximates, as we do, free energy differences by
energy differences, EA

- - EHA, but makes a further approxima-
tion by equating this to -EH using Bader’s theory of atoms in
molecules (AIM),39 where EH is the AIM energy of the ionizable
proton in AH, assuming that the AIM energies of the other atoms
cancel. He uses the PW91 density functional,40 COSMO, and
the 6-311+G** basis set. Unlike us, however, he carries out a
full geometry optimization with this basis set. His results are
impressive; for example, for a series of 19 related aliphatic
carboxylic acids, his fit gives a mean unsigned error of 0.105
pKa units, and a maximum unsigned error of 0.342.

We decided to try the PW91 functional and so we repeated
our calculations using all 34 molecules in the test set, replacing
OLYP with PW91. The mean absolute deviations in the
computed pKa values were 0.16 (carboxylic acids), 0.34 (alco-
hols/phenols), 0.34 (amines/anilines), and 0.06 (pyridines). These
results offer no reason to switch functionals. (A full set of
calculated pKa values, with mean absolute and standard devia-
tions are provided in the Supporting Information.)

TABLE 2: Final Calculated pKa Values from OLYP/6-311+G(d,p)//3-21G(d) Calculations Using the COSMO Solvation Model

molecules pKa
exp pKa

cal ∆pKa
a molecules pKa

exp pKa
cal ∆pKa

Alcohols + Phenols
methanol 15.54 15.79 0.25 trifluoroethanol 12.37 12.38 0.01
phenol 9.98 9.85 -0.13 2.4-dinitrophenol 4.12 4.09 -0.03
2-methylphenol 10.32 10.32 0.00 2.5-dinitrophenol 5.20 5.23 0.03
2-nitrophenol 7.22 7.06 -0.16 2.6-dinitrophenol 3.73 4.25 0.52
3-nitrophenol 8.36 7.92 -0.43 MADb 0.17

Carboxylic Acids
formic acid 3.76 3.35 -0.41 butanoic acid 4.82 5.06 0.24
acetic acid 4.76 4.66 -0.10 benzoic acid 4.19 4.33 0.14
cyanoacetic acid 2.47 2.51 0.04 4-nitrobenzoic acid 3.44 3.40 -0.04
oxalic acid 1.25 1.44 0.19 MAD 0.17

Anilines + Amines
aniline 4.61 4.89 0.28 methylamine 10.67 10.52 -0.15
3-chloroaniline 3.52 3.71 0.19 dimethylamine 10.77 10.71 -0.06
3-(methylsulfonyl)aniline 2.58 2.94 0.36 trimethylamine 9.81 10.12 0.31
4-cyanoaniline 1.74 1.63 -0.11 guanidine 13.60 12.89 -0.71
4-methoxyaniline 5.31 6.19 0.88 piperidine 11.11 11.17 0.06
4-nitroaniline 1.00 0.07 -0.93 MAD 0.37

Pyridines
pyridine 5.25 5.23 -0.02 2-methylpyridine 5.97 5.96 -0.01
3-cyanopyridine 1.39 1.39 -0.00 3,4-dimethylpyridine 6.48 6.46 -0.02
3-fluoropyridine 2.97 3.01 0.04 2,4,6-trimethylpyridine 7.43 7.44 0.01
4-methoxypyridine 6.55 6.61 0.06 MAD 0.02

a ∆pKa ) pKa
cal - pKa

exp. b Mean absolute deviation.
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Both Klamt et al.6 and Adam7 comment in their papers that
the slope of their regression fits are significantly lower than the
value expected theoretically (1/2.303RT). This is apparently a
long-standing problem.41 Our own results behave similarly: at
298 K, the theoretical slope should be 0.733 kcal-1, but all of
our fits have slopes much less than this. We will return to this
problem in a follow-up paper.

Prior to our work, the paper by Friesner and co-workers9 was
one of the most ambitious efforts to fit a large database of
experimental pKa values through theory. These authors first use
a thermodynamic cycle to obtain absolute pKa values, optimizing
geometries in the gas phase at the B3LYP/6-31G* level and
computing a single-point energy with the cc-pvtz-f basis.42

Diffuse functions are added at the reactive center for the negative
ion. Solvent effects are included via a self-consistent reaction
field (SCRF) method.43 As this approach was unable to achieve
the desired accuracy (an average deviation of 0.5 pKa units or
less), an empirical fit was then imposed on these “raw” pKa

values: pKa ) A(pKa “raw”) + B. As in our case, a different fit
was used for different functional groups. There are in fact three
parameters for each functional group: A, B, and the ionic radius
in the SCRF model. In our opinion, ref 9 overfits the data. In
some functional groups, there are only four compounds fitted
using three empirical constants. In addition, as our results show,
the use of gas-phase geometries worsens the agreement with
experiment significantly. Nonetheless the mean absolute devia-
tion in their ∼200 compound training set was a respectable 0.41
pKa units. They subsequently applied their computational
protocol to a diverse set of 16 medicinal molecules from the
CMC database,44 obtaining a mean absolute deviation of 0.6
pKa units with a maximum error of 2.1 pKa units.

5. Conclusions

We have developed a protocol for the first principles
calculation of acid dissociation constants that strikes a good
compromise between computational expense and accuracy. We
have explored several theoretical methods and basis sets in
conjunction with the COSMO continuum solvation model. As
in previous work, the calculated energy differences of depro-
tonation are used in an empirical linear regression fit to
experimental pKa values. Our main findings: (1) Pure density
functional models, specifically OLYP, that are potentially much
more efficient than Hartree-Fock or hybrid functionals, perform
as well as the latter. (2) Moderate basis sets, such as 6-311+G**,
suffice for the final energy differences. (3) A small basis set,
3-21G*, is appropriate for geometry optimization. (4) It is
important to optimize geometries in the presence of a continuum
solvent model (COSMO). (5) Methods using high-level gas-
phase calculations in conjunction with a thermodynamic cycle
do not improve the agreement with experiment. (6) It is essential
to use different fitting parameters for different classes of
compounds.
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