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Solid State Marx Generator Using
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Jih-Sheng (Jason) Lai, Senior Member, IEEE

Abstract—This paper describes a newly developed novel repet-
itive impulse voltage generator using a boost converter array. To
solve problems such as short life time, low operating frequency,
and the fixed pulse width of conventional generators, the proposed
generator is designed with a boost converter array that employs
series-connected capacitors and insulated gate bipolar transistors.
The circuit can easily obtain a high-voltage pulse without any high-
voltage direct current source and pulse transformer. Thus, the pro-
posed circuit not only allows elimination of the expensive high-fre-
quency transformer but also allows operation at a frequency up to
several Kilohertz with high reliability and longer life span. To val-
idate the proposed circuit, two pulse generators rated at 1.8 kV,
40 A and 20 kV, 300 A are implemented and tested.

Index Terms—Boost converter, pulse generator, pulsed power,
series-connection.

1. INTRODUCTION

ULSED power is to make a unique phenomenon using

high density and very short energy pulse for an applica-
tion which needs physical or electrical reaction. It has been used
and developed for a long time in several applications as shown
in Table 1. Several types of pulsed power have been introduced
for medical, military, and commercial applications [1].

The Marx generator is a very simple circuit producing a high-
voltage pulse without any pulse transformer and very high input
voltage, as shown in Fig. 1. Thus, it is widely used in labo-
ratories as an impulse generator [2]. However, the spark gap
switch of the Marx generator has some drawbacks: short life-
time and low operational frequency. In particular, the Marx gen-
erator needs a special triggering device for precise turn-on of
switch.

Most of earlier researches on pulsed generators used high-
voltage sources with stacked transmission lines in combination
with a spark gap or vacuum tube [3]. Other high-voltage pulse
generation circuits used high-voltage direct current (dc) power
supply along with energy storage for the pulse-power loads.
These systems are expensive, inefficient, and limited in peak
power output.

These prior-art methods require several power conversion
steps, which cause a complex circuit structure and low relia-
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TABLE 1

PULSE GENERATOR APPLICATION

Application

Pulse generator

laser welder

pulsed Nd: YAG, CO2

photolithography

pulsed- X-ray

metal forming

pulsed magnetic forming

rock fracturing

pulsed power supply

surface finishing of metal

pulsed laser light

pulsed electromagnetic

Industry steel casting field
powder forming exploding wire, MHD
fabric sterilization rf power
pulsed U. V. for paint pulsed U. V. source
pulsed electrostatic precipitator pulsed E field
microwave oil sludge separation  pulsed microwave
eye surgery pulsed laser
Medical bone repair pulsed low power

mjection materials through the
skin without needles

pulsed linear motor

Environment

ultra-low concentration analysis

pulsed laser

destroying of toxic gases and
water purification

pulsed E field

Agriculture

killing bacteria by E fields

pulsed high voltage
source

pulsed X-ray for feed grain

preservation

pulsed X-ray
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C
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Fig. 1.

Marx generator.

bility. To solve these problems, some state-of-the-art methods
using power semiconductor devices and pulse transformer were
proposed in recent years. However, they have some limitations
to increase rise time and power rating simultaneously.
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Fig. 2. Configuration of the proposed circuit. (a) Positive output pulse circuit.
(b) Negative output pulse circuit.

In this paper, a novel pulse generator using a boost converter
array is proposed. As shown in Fig. 2, it does not need any pulse
transformer and high-voltage dc source. It has the following
features: fast rise time, flat-top pulse, easy high-voltage pulse
forming and expansion with boost-converter arrays, high-fre-
quency operation, and easy extension by series-connection of
capacitors and switches.

The proposed circuit is, therefore, very reliable and suitable
for high-voltage pulse generator applications. Moreover, it
can be improved by using series-connected switches, which
allows reduction in line inductance and the number of devices
by increasing the input voltage [4], [5]. The voltage rating of
the switches can be increased by series-connection using some
simple voltage balancing circuits.

To verify the proposed circuit, a 1.8 kV, 40 A and a 20 kV,
300 A prototype pulse generators were fabricated and fully char-
acterized with theoretical analysis, practical design, and test re-
sults. Overall performance of the pulse generator will be pre-
sented with experimental results.

II. CONFIGURATION AND PRINCIPLE

A. Circuit Configuration

The structure of the proposed circuit consists of n number of
switches, capacitors, inductors and diodes, as shown in Fig. 2. It
apparently forms a boost converter array. In particular, it can be
designed to obtain positive or negative pulses by the position of
the ground and load. The discharge current of the boost voltage
of capacitors can be neglected if the duty ratio of the output
pulse is very small (Iess than 0.01). For continuous inductor
current conditions, the nth capacitor voltage can be expressed
as follows:

ey
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Fig. 3. Boost rate of output voltage with discontinuous inductor current.

where D is the duty ratio, T, is the pulse width, 7% is the pulse
period, V¢, and V,,,_ are capacitor voltages of nth and (n —
1)th. Therefore, nth capacitor voltage is

1
(1-D)»
where n is the number of boost converters. For discontinuous

inductor current conditions, the nth capacitor voltage is given
by

Ven = Vs @)

cn—1

v (LD
er =\ 2L,
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where L is the inductance of inductor, V,,_; is the capacitor
voltage at the input side of V,,, and I, is the average value of
output current.

Fig. 3 shows the boost rate of output voltage when inductor
current is discontinuous. Note that if the duty ratio is low
enough, the boosted voltage is minor. Therefore, the output
voltage is almost the multiples of the input voltage for the low
duty cycle.

In the meantime, if the number of boost stacks is increased,
the line inductance is also increased. Because the rise time of
the output pulse increases proportionally with line inductance, it
should be reduced. In this paper, a series-connected switch using
an insulated gate bipolar transistor (IGBT) module is used to
increase the input voltage and to reduce the number of converter
array and devices.

B. Operational Principle

The basic operations of the proposed circuit can be divided
into to three modes. The first mode is from the time after
charging to the turn-on of switches. The second mode is when
switches are turned on. The third one is the capacitor charging
mode.

Fig. 4 shows the operation modes and waveforms of the cir-
cuit for positive pulse generation. To simplify the description, it
is assumed that all diodes and devices are ideal and boost voltage
is negligible because the duty ratio of the pulse is less than 0.01.

Mode 1) There is no current flow in the circuit. The voltage of

capacitors is maintained at the input voltage level,
and diodes and switches are turned off. Therefore,
the voltage applied to overall components is the
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Fig. 4. Operational modes and waveforms. (a) Mode 1. (b) Mode 2. (c) Mode
3. (d) Waveform.

input voltage. Thus, it does not need high voltage
isolation.

Mode 2) All switches are turned on at this time and capac-
itors are connected in series. The output voltage is
applied to the load and is in proportion to the sum
of voltage of the series-connected capacitors. At this
time, the terminal of the load side has high voltage
potential. There it needs to be isolated between the
low voltage side and the output side during the pulse
period. Therefore, isolation voltage can be lowered
compared to high dc voltage isolation.

Mode 3) After the switches are turned off, the capacitors are
charged to the input voltage level through the path
of input, inductors and diodes.
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Fig. 5. Clamp operation of the proposed circuit. (a) Circuit schematic.
(b) Equivalent circuit.

These three modes are explained on the basis of the assump-
tion that all parameters are ideal. However, in a real circuit, time
delay of the driving signal can result in difference among switch
voltage levels. Fortunately, this problem is naturally solved by
the proposed circuit structure where the equivalent series con-
nected capacitor and diode are in parallel with the switch to pro-
vide voltage clamp so as to prevent switch over voltages.

C. Features and Design of the Proposed Circuit

1) Features: The proposed circuit generates high-voltage
pulses only during turn-on period of switches. Therefore, iso-
lation of all circuits is strictly required and is considered only
for the high pulse voltage. Contrary to the conventional pulse
generators, the proposed circuit uses power semiconductor as
switches, which has several advantages such as long lifetime
and high operational frequency up to a few kilohertz.

One of the most important features of the proposed circuit is a
balanced clamping operation against switch over-voltages. The
over-voltage of each switch can be naturally clamped by capac-
itors in parallel with switches, as shown in Fig. 5. If the switch
voltage is increased over the capacitor voltage, the diode auto-
matically turns on to clamp the switch voltage to the capacitor
voltage. Thus, the difference of gate drive delays and the switch
characteristics does not result in the device voltage breakdown.
In addition to the above main features, the proposed circuit has
the following advantages.

1)  No need for a pulse transformer or high-voltage dc
power source.
2)  The pulse voltage is controllable by drive signal.
3) Easy change of pulse polarity by adjusting the position
of ground and load.
In terms of switch rating, the maximum value of the output
pulse current has to be lower than the pulse switch current rating.
If output voltage of several kilovolts is applied to short out
the load circuit, an extremely high current will flow to the load
with only a few microseconds or submicroseconds. Therefore,
the switch selection criterion is based on the short circuit current
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Fig. 6. Inductance condition for discontinuous current. (a) Maximum value of
the inductor and duty cycle. (b) Expanded portion of (a).

capability. For the low-power prototype, the switch is designed
with a continuous current of 40 A and a short circuit current
of 200 A under 1 kHz frequency and 300 V input voltage. The
IGBT with 600 V, 50 A rating is selected for this case.

For the high-power prototype, the maximum continuous
pulse current and short-circuit current are 300 and 1000 A,
respectively. Therefore, the 1200 V, 400 A IGBT is selected.

2) Design of the Proposed Circuit: In our experiments, the
maximum pulse width is 5 s under 1 kHz switching, so the duty
cycle is less than 0.005, which yields very little voltage boost;
i.e., the adjacent stage capacitor voltages are nearly identical.
With such a low duty cycle, the inductor current can easily be-
come discontinuous. The loss caused by reverse recovery cur-
rent of the diode is avoided if the inductor current is discon-
tinuous. Therefore, the main design criterion for inductor is the
completion of capacitor charge and discharge within a switching
period, and the condition to satisfy discontinuous current con-
dition is shown in (4)

2L1,(14+ D)

D2V,
where I, is the peak inductor current, V¢, is the nth capacitor
voltage, D is duty cycle, I, is output average current, and n is

the number of series boost circuit stacks. From (4), the inductor
value can be obtained as
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The relationship between duty cycle and inductor for discon-
tinuous current can then be shown in Fig. 6. Here, the output
voltage and current are normalized on the per unit basis. As im-
plication in (5), when D is small enough (< 0.01), the max-
imum inductor value for discontinuous condition is changed
only a little, and the change is almost linear with logarithm hor-
izontal scale, as shown in Fig. 6(b).

For the design of pulse capacitors, voltage drop during dis-
charging has to be considered, and the capacitor value can be
determined as follows:

7 X Vout
Cron = Av x Rigada (6)
where 7 is the pulse width, V, is the pulse voltage, Rjoaq 1S
the load value, Awv is the voltage drop.

III. EXPERIMENTAL RESULTS
A. Small Power Prototype

The 1.8 kV and 40 A proposed pulse generator was built and
tested to verify the principle of operation. Fig. 5 shows the ex-
perimental circuit with the parameters and the part numbers of
components used. A 600 V-50 A IGBT are used as a single
switch and six IGBTs are used, as shown in Fig. 7. The pulse
width is varied from 1 to 5 pus for 1 kHz operation. Inductor
value is sufficiently low to ensure a discontinuous current.

Fig. 8 shows the experimental waveforms of the switch
voltage and gate voltage. It can be seen that the 0.5 us dif-
ference in gate signals has little influence on switch voltage
because of the clamping operation. Figs. 9 and 10 shows the
high-voltage pulse waveforms. We note that the pulse width
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Fig. 10. Output pulse waveforms at the wide time.

is also changeable from 1 to 5 us and operation frequency is
possible up to 1 kHz. All waveforms are well-matched as the
expected ones.

Fig. 11 shows the output pulse when one switch is not oper-
ated. The proportional voltage to the operating switches is ob-
tained.

B. High Power Prototype

The proposed pulse generator using series-connected IGBTs
has been built and tested to verify the principle of operation.
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Series-connected IGBT switches along with their voltage balancing

The maximum pulse rating is 20 kV, 300 A, 5 ps, and 1 kHz.
Fig. 12 shows the experimental circuit and the used circuit pa-
rameters and the parts numbers. A total of 16 IGBT modules
are used to make the pulse generator. As shown in Fig. 13, to in-
crease the rating of a switch voltage, two switches of an IGBT
module are connected in series along with the voltage balancing
circuits shown in the dotted boxes [5]. Fig. 14 shows the tran-
sient turn-on and turn-off voltage waveforms of the series con-
nected switches, which indicate a mismatch between two gate
drive signals. In spite of such an obvious differentiation between
gate drive delays, the voltages of switches are well-balanced.

Figs. 15 and 16 show the experimental high-voltage pulse
waveforms. Note that the pulse width is about 5 us and pulse
voltage is about 20 kV and 300 A. The rise time of the pulse is
less than 1 us, and the operating frequency is 1 kHz.
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IV. CONCLUSION

This paper has described the features and operation of the
novel pulse generator using boost converters. Experimental re-
sults were discussed with a low power 1.8 kV—40 A and a high
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Fig. 16. Output pulse waveforms at a wide time.

power 20 kV-300 A pulsed generators using boost converter.
The proposed circuit has various advantages over conventional
pulse generators by eliminating the high-voltage transformer,
resulting in high-frequency operation, simple structure, and
high efficiency.

Also, it has the following features: fast rise time, flat pulse
top, easy expanding to higher stack voltage with boost-converter
arrays, high-frequency operation, and easy series-connection of
switches. In particular, series-connected IGBT modules were
used to increase input voltage and voltage rating of switches,
which reduces line inductance because the number of converter
arrays and devices were decreased.

Therefore, the proposed converter is very promising for
various high-voltage pulse applications such as high-voltage
testers, laser equipments, and environmental applications.
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