Beam commissioning of a 6 MeV X-band Electron Linear Accelerator for radiation therapy

Seung Hyun Lee, Jungho Seo, Seung-wook Shin, Donghyup Ha, Hui-su Kim, Jongchul Lee, Jong-seo Chai* Sungkyunkwan University

> Byeong-no Lee, Mun-sik Chai Korea Atomic Energy Research Institute

> > Contribute talk November 16, 2017 HICO, Gyeongju, Korea

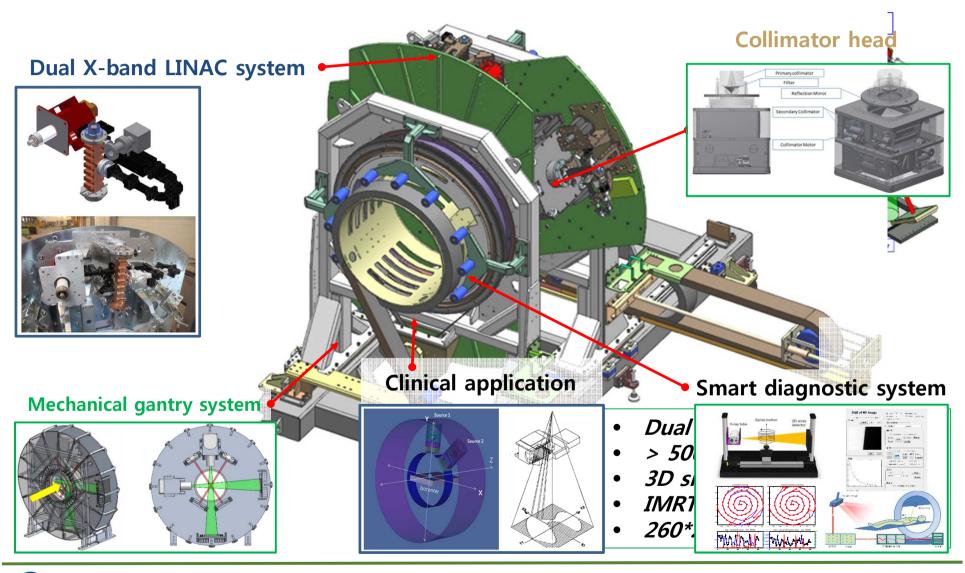
01 Introduction

02 X-band LINAC for radiation therapy

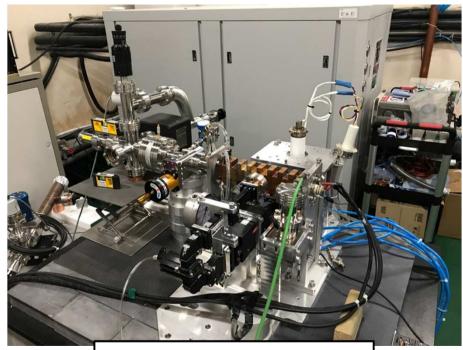
03 Beam commissioning history

04 Experimental result and analysis

05 Conclusion



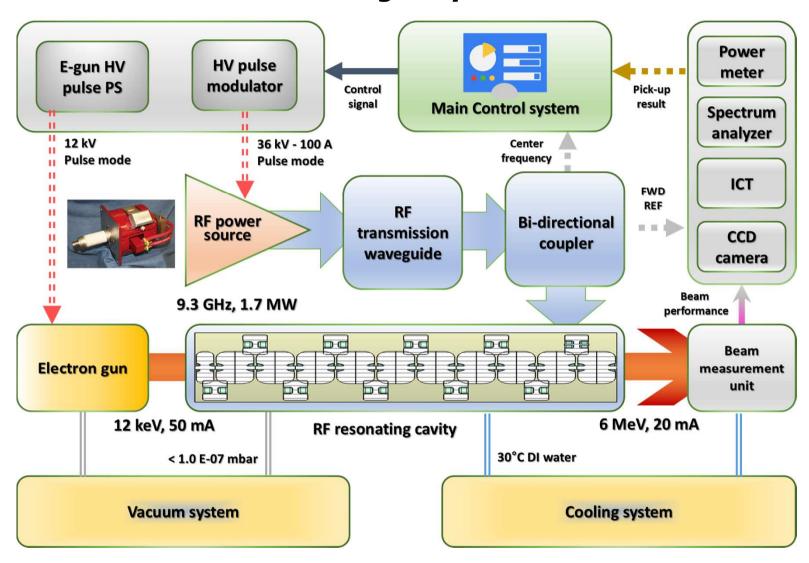
◆ Dual-head gantry system for Radiation therapy



Dual-head gantry system for Radiation therapy

♦ Research objective

- > Structure of 6 MeV X-band electron LINAC for dual-head gantry.
- > System implementation for beam commissioning test.
- > Experiment test with RF power transmission and beam acceleration.
- > Data analysis of performance result.

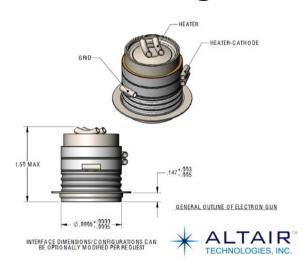

High-power test @ SKKU

Beam commissioning test @ KAERI

◆ X-band LINAC for dual-head gantry

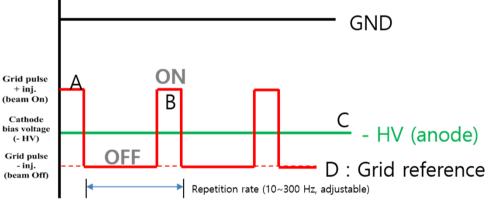
♦ X-band LINAC for dual-head gantry – Design features

Parameters	Value
Beam energy	6 MeV
Peak beam current	20 mA
E-gun type	Dispenser triode E-gun
E-gun HV pulse	-12 kV
Grid voltage	+ 50 V for injection
RF resonating Frequency	9300 ± 30 MHz
RF accelerating cavity type	Side-coupled type, Pi/2 mode
Accelerating gradient per unit length	25 MV/m
Magnetron RF power (peak/average)	1.7 MW / 1.35 kW
Pulse width	$4.0 \pm 1.0 \text{ us}$
Duty factor	0.0008
Waveguide power durability	2.0 MW / 4 kW
Waveguide type	WR-112
Circulator type	4-port with 5 MW loader
Novel gas pressure	SF ₆ novel gas in 35 psi
Cooling system	DI Water @ 30 °C



◆ Performance evaluation – Characteristic of X-band RF system [9]

	Parameter	Frequency dependence	Effects
	Wavelength	f_{O}	Compactness
	Effective shunt impedance per unit length ZT ²	$f_0^{1/2}$	Acceleration efficiency
Advantages	Maximum electric field strength E_{max} (Kilpatrick Criterion)	$f_0^{1/2}$	Electric arching durability
	Efficiency of acceleration per unit stored energy r/Q	f_O	High-dose rate
	Beam loading fluctuation	$f_0^{-1/2}$	Stability
Disadvantages	RF loss factor (Q-factor)	$f_0^{-1/2}$	RF transmit
	Power dissipation <i>P</i>	$f_0^{-1/2}$	efficiency



◆ Triode electron gun

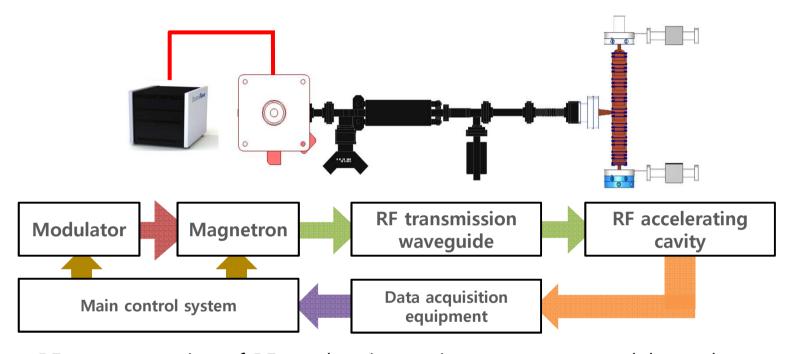
	NOMINAL	RANGE
Perveance	0.9 μpervs	.01 to >1.4 μpervs
Cutoff	Ek/Ec ≥ 110	-55V to -65V @ 12 kV
Ek	-12kV	up to -18kV
Grid Drive	1.2A lk	+50V to +70V typical
Heater	Voltage: 5.0V (recommended MAX)	Current: 2.0A MAX
Cathode	Dispenser Type	
Coating	M-Type: 80% Os, 20% W	
Mix	5:3:2 with a molecular weight of 67.3%, BaO,	14.8% CaO, 17.9% Al ₂ O ₃
Optional Mix	3:1:1, 4:1:1, 6:1:2	
Beam Shape	Call for Beam Characteristics	
Leakage	Cathode to Ground: <100uA at 21 kV	

Parameters	Triode E-gun	Diode E-gun
(Relative) Size	Smaller	Bigger
Current density	Low	High
Grid existence	Ο	Χ
Precise current change	Ο	Χ
Normalized emittance (de-focusing)	Low	High
Price	High	Low

• Typical triode E-gun operation

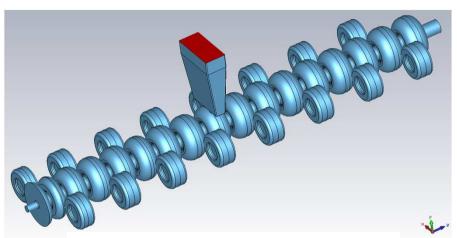
- Anode HV: - 12 kV DC

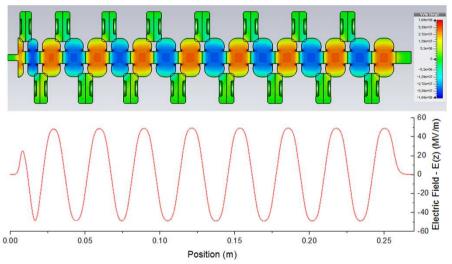
- Repetition rate : ~ 400 Hz

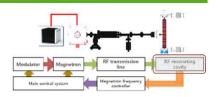

- Pulse width: 0 ~ 20 us

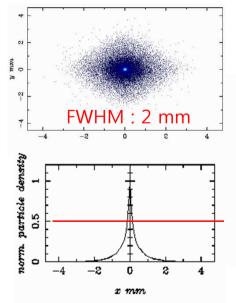
(- HV)

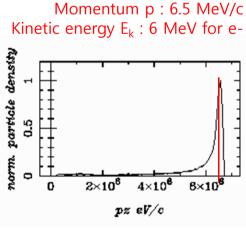
- inj.


♦ RF system configuration


- RF system consists of RF accelerating cavity, magnetron, modulator, data acquisition equipment, and main control system.
- Characteristic parameters as beam energy, beam current and dose rate are defined by the correlation between RF cavity and RF power source containing magnetron and modulator.
- Main control system adjusts the output parameters by using HV pulse power suppliers according to the results obtained.

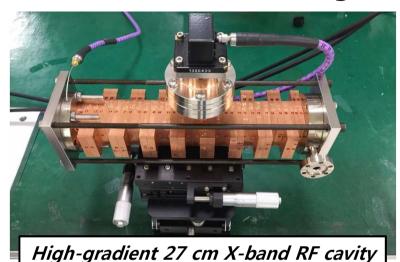

♦ X-band RF accelerating cavity

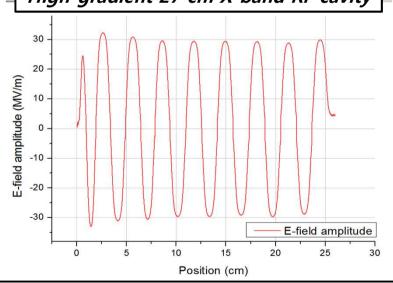

X-band RF cavity full-cell structure

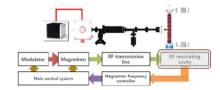


Electric field distribution (25 MV/m average)

- High-frequency electromagnetic field simulation was performed using CST Microwave studio (MWS) for X-band RF accelerating cavity.
- Using electric field distribution data, electron beam dynamics simulation was performed using ASTRA code.






Unique Origin Unique Future

♦ X-band RF accelerating cavity

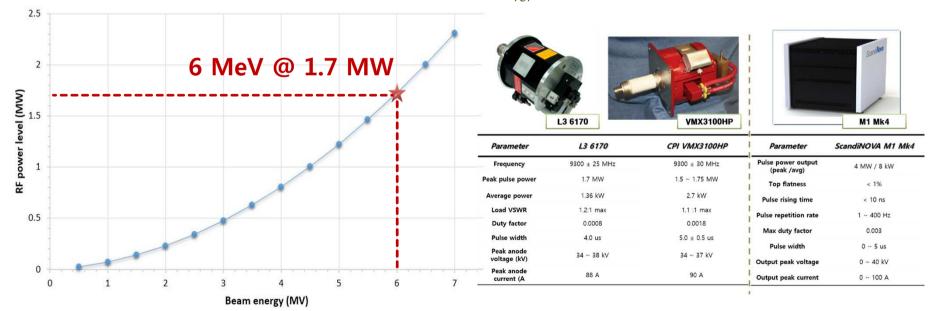
Bead-pull measurement of electric field distribution

- X-band RF accelerating cavity with $\pi/2$ mode with a side-coupled structure.
- 27 cm length for high accelerating gradient with 25 MV/m electric field.
- 7 bunching cells, and 10 accelerating cells
 : 353 kV/cell.
- 104 M Ω /m of effective shunt impedance.
- Manufactured in Korea.

Parameter	Design value	Measurement value
f_{c}	9.309 GHz	9.3069 GHz
S ₁₁	-29.81 dB	-16.676 dB
Δf_{3dB}	220 kHz	350 kHz
External Q	11,000	8,500
VSWR	1.065	1.3436
Temperature	25℃	25℃

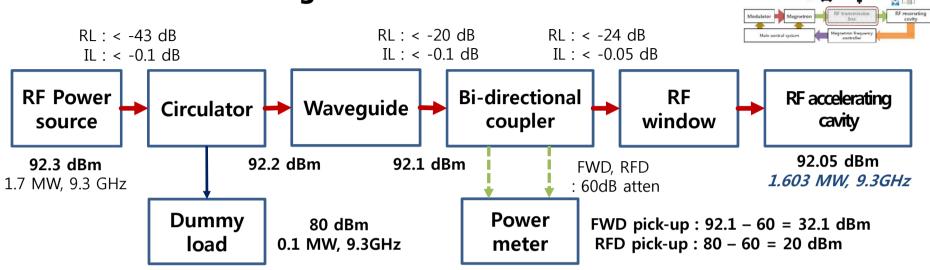
Unique Origin Unique Future

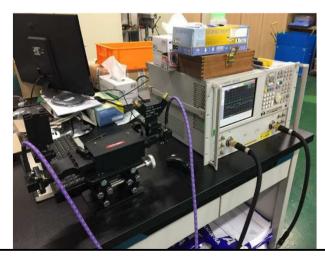
RF source


$$V_{gain} = rac{2\sqrt{eta_0}}{1+eta_0} ullet \sqrt{P_{rf}ullet r_{sh}ullet l} ullet \cos\left(\omega t + heta
ight) iggraphi P_{diss} = rac{V_{gain}^2}{R_{sh}} = \omega U iggl(rac{1}{Q_{ext}} + rac{1}{Q_{unloaded}}iggr)$$

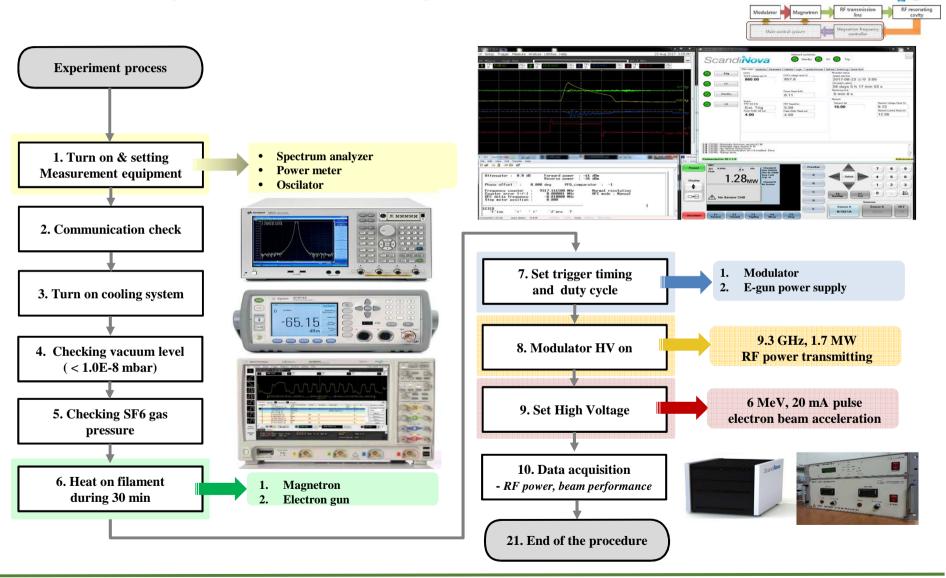
$$P_{\textit{beam}} = \left. V_{\textit{qain}} \right.^* I_{\textit{beam}}$$

 \checkmark Effective shunt impedance (r_{sh}): 104 MΩ/m


 $P_{total} = P_{diss} + P_{ref} + P_{beam}$ We Beam energy (V_{gain}) / current (I_{beam}): 6 MeV / 20 mA peak Transient time factor (TTF) with phase difference: > 0.7

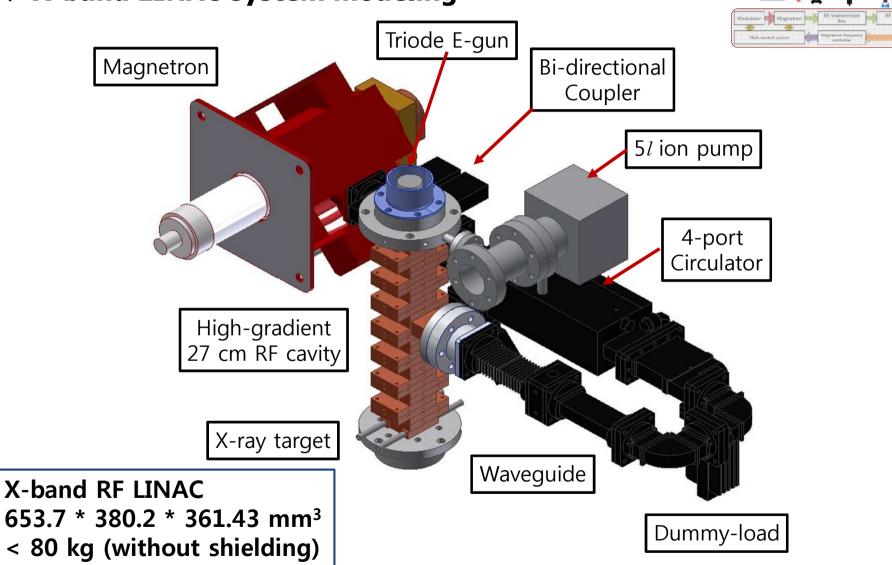

✓ Return loss ($\propto P_{ref}$) : < 5%

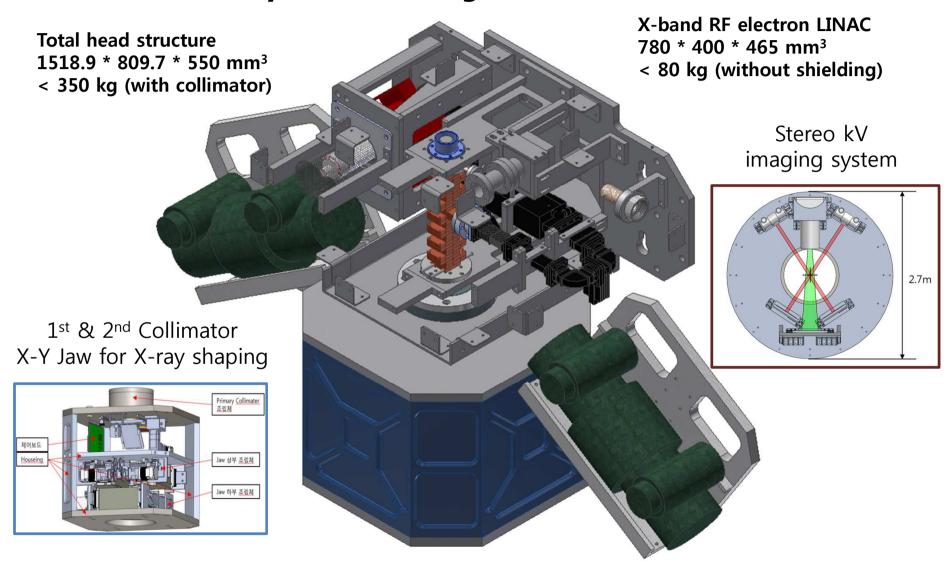
Unique Origin Unique Future


Component measurement using Network analyzer

Assembled RF transmission line	Value
Center freq. (GHz)	9.2979
Δf_{3dB} (MHz)	± 29
S ₁₁ , RL (dB)	-21.27
S ₂₁ , IL (dB)	-0.248
P.D (degree)	119.67
VSWR (:1)	1.188

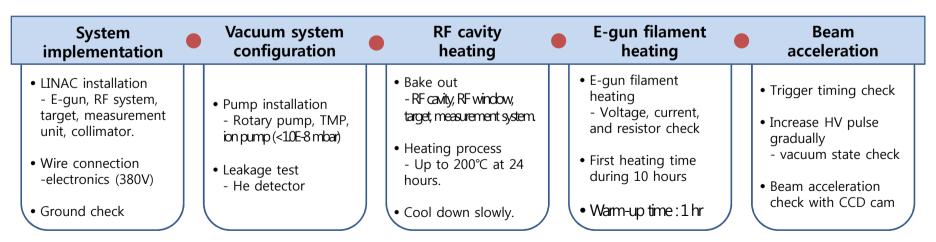
Unique Origin Unique Future


♦ Control system and data acquisition


Unique Origin Unique Future

♦ X-band LINAC system modeling

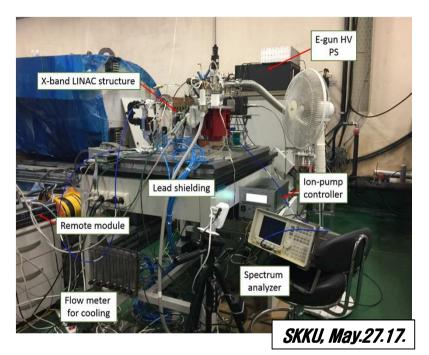
◆ X-band LINAC system modeling

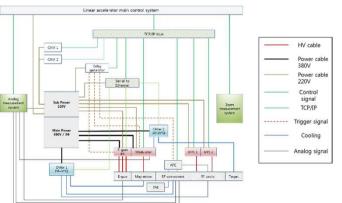


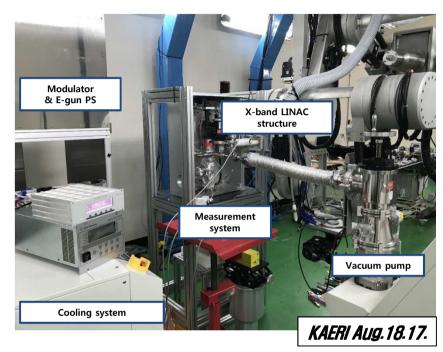
♦ Process of commissioning set-up

RF commissioning @ SKKU [Jan. 2. 2017 ~ Mar. 31. 2017, 216 hrs]

Vacuum system Cooling system Magnetron RF pulse power **System** configuration configuration filament heating transmission implementation Magnetron filament • Trigger timing check • Cooling line installation • RF system installation heating - RF cavity, Magnetron, • Pump installation - RF cavity, magnetron, - Voltage, current, Increase HV pulse - Rotary pump, TMP, modulator, direulator, modulator, and wavequide. and resistor check aradually ion pump (<10E-8 mbar) dummy-load with chiller - vacuum state check Wire connection • First heating time • Leakage test -electronics (380V) during 5 hours How meter connection • Full -power - He detector transmission with low - Each component Ground check • Warm-up time: 30 min reflection power flow rate check

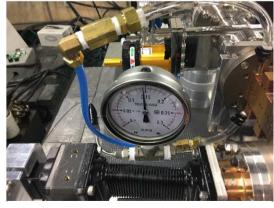

Beam commissioning @ KAERI [Jul. 31. 2017 ~ Oct. 20. 2017, 554 hrs]





Beam commissioning history

♦ System implementation

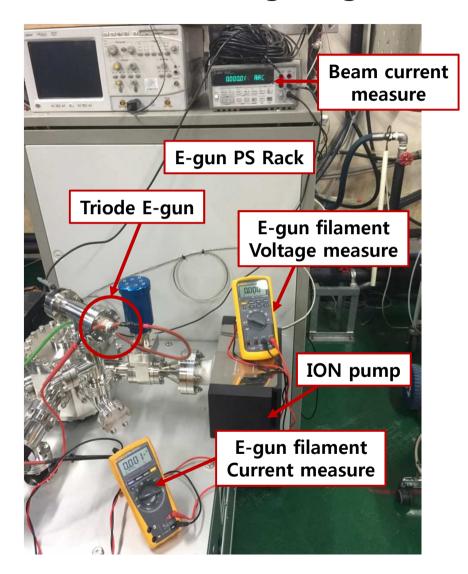


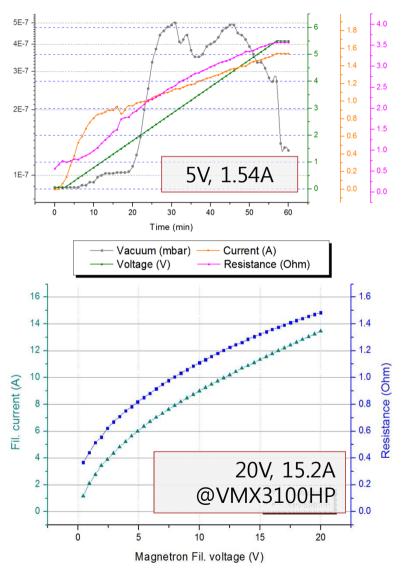
Beam commissioning history

Cooling system with 0.1°C stability

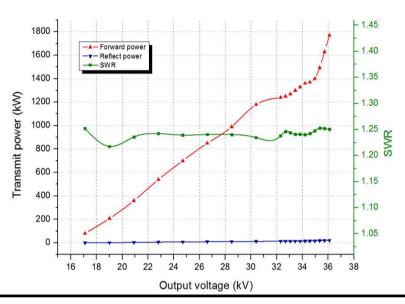
SF₆ dense meter (35 psi)

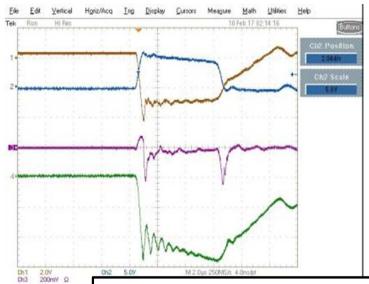
Vacuum pump with ion pump controller




Main control system

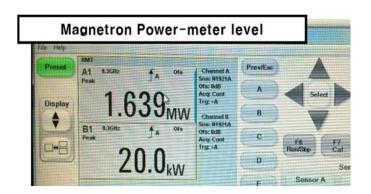
Beam commissioning history

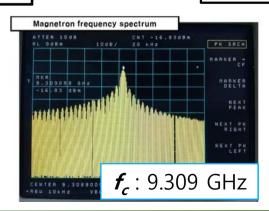

♦ Filament heating — E-gun & magnetron

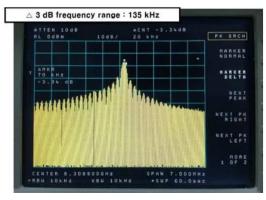


RF commissioning test

FWD 1.64 MW **RFD** 20 kW **SWR** 1.2 : 1 **Repetition rate** 120 Hz **Pulse width** 4.0 us

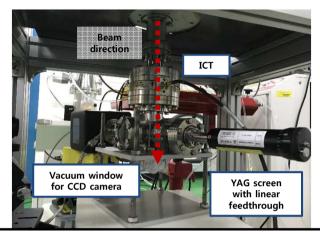


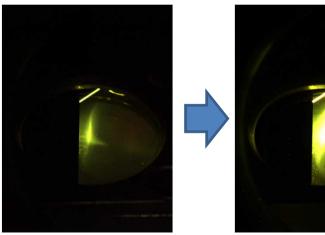

Brown: modulator HV


Blue : modulator current

Purple : Reflection power

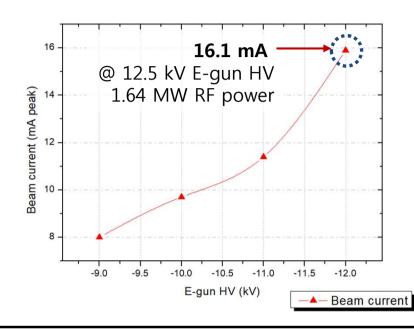
Green: HV measured 1:1000 probe



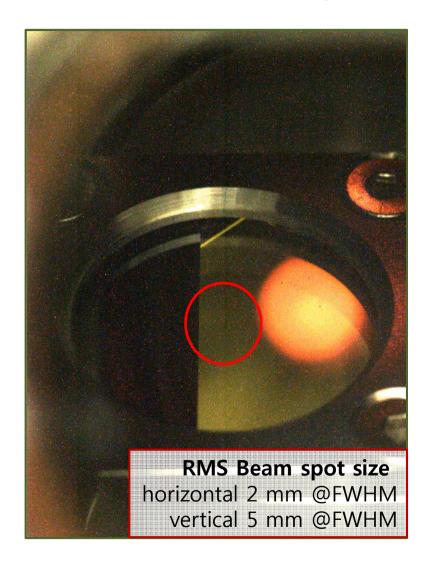


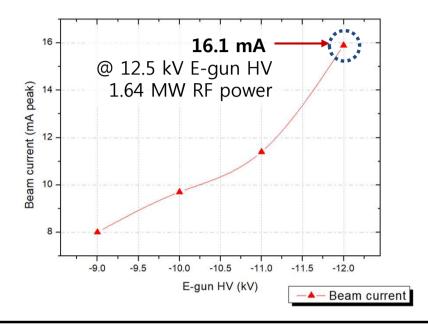
Experimental result and analysis

Beam commissioning test - current & spot size


Beam measurement system implementation

RF Power 1.05 MW (12.5kV - 65 + 55V)


RF Power 1.64 MW (12.5kV - 65 + 55V)

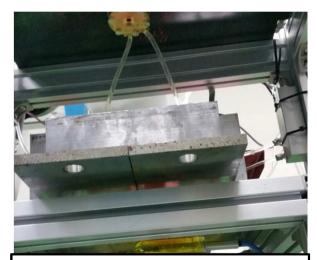


E-gun HV voltage (kV)	Beam current (mA) @ 1.64 MW
< -9.0	-
- 9.0	8.0
- 10.0	9.7
- 11.0	11.4
- 12.5	16.1

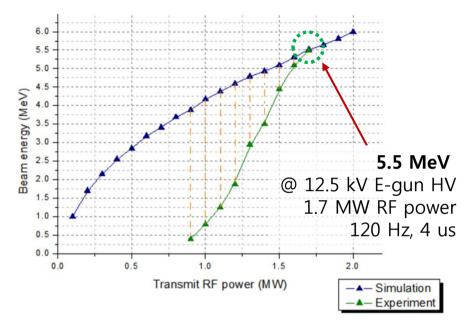
Experimental result and analysis

◆ Beam commissioning test – current & spot size

E-gun HV voltage (kV)	Beam current (mA) @ 1.64 MW
< -9.0	-
- 9.0	8.0
- 10.0	9.7
- 11.0	11.4
- 12.5	16.1



Experimental result and analysis


♦ Beam commissioning test – beam energy

e-γ tungsten target for X-ray irradiation

Steel plate for energy measurement by HVL method

Transmitted power (MW)	Beam energy (MeV)
1.07	0.8
1.22	1.96
1.37	3.48
1.52	5.02
1.7	5.5

Parameters	X-band electron LINAC system for dual-head RT	Cyberknife® M6	
Operating frequency	9.309 GHz	9.3 GHz	
Maximum beam energy	5.5 MeV	6 MeV	
Beam peak current	16 mA	30 ~ 40 mA	
Length of cavity	27 cm	~ 40 cm	
MeV/cm	0.2222	0.15	
Maximum forward RF power	1.639 MW	2.0 MW	
Duty factor	0.0008	0.001	
Shunt impedance	108 MΩ/m	< 80 MΩ/m	
VSWR max	1.3	-	
Power stability	< 1%	-	
E-gun type	Triode E-gun (Diode E-gun)	Triode E-gun	
E-gun pulse HV / grid	-12 kV / 100 V	-	
Dose rate	> 500 cGy/min * 2	1,000 cGy/min	
Vacuum	< 1E-07 mbar	-	

- In accordance trend of radiation therapy, we have been developing X-band electron LINAC for dual-head radiation therapy since 2012.
- The X-band electron LINAC system was designed, fabricated and experimented of beam commissioning test.
- Based on the design structure, X-band electron LINAC test-bench was constructed for commissioning test.
- Before performing beam commissioning test, RF commissioning test was conducted to measure resonant frequency and peak RF power level in SKKU.
- Beam commissioning experiments have been conducing to find acceleration beam performance in KAERI.
- In order to achieve the final goal, we will continue to carry on beam commissioning test for 6 MV 500 cGy X-ray generation and accumulate experimental data.

Thanks for your attention

Back-up slide

Table 3. Overview of literature studies: comparison of treatment outcomes according to the radiation therapy schedule

Reference	Radiation dose (Gy) per fraction/# of fractions	No. of patients	Treatment outcome ^{a)} (%)	Toxicity (%)
Boulware et al. [16]	10 Gy/#1	86	Bleeding (45), pain (42)	Acute (9.3)
	10 Gy/#2, 3-4 wk interval	55	Bleeding (85), pain (59)	Late (17.4)
	10 Gy/#3, 3-4 wk interval	20	Bleeding (100), pain (63)	
Hodson and Krepart [5]	10 Gy/#3, 4 wk interval	14	Bleeding (100), pain (100)	Late (14.3)
Halle et al. [6]	10 Gy/#1-3, at 4 wk interval or recurrence	42	Bleeding (90), pain (44)	Acute (6.7), severe late (11.9)
Patricio et al. [19]	6.5 Gy/#2 in 48 hr	56	Bleeding (94), pain (45)	Severe (16.3) ^{b)}
Spanos et al. [20]	3.7 Gy/#4 in 48 hr, 2-4 wk interval, up to three cycles	61	Bleeding (76), pain (31)	Acute (3), late (7)
Onsrud et al. [14]	10 Gy/#1	11	Bleeding (90), pain (0) ^{c)}	Acute (36.4)
	10 Gy/#2, 4 wk interval	51		Acute (45.3), severe late (9.4)
	10 Gy/#3, 4 wk interval	2		Acute (43.8), severe late (7.8)
Mishra et al. [15]	10 Gy/#1	100	Bleeding (74), pain (47)	Late (10) ^d
	10 Gy/#2, 4 wk interval	61	Bleeding (80), pain (59)	
	10 Gy/#3, 4 wk interval	33	Bleeding (100), pain (50)	
Present study	5 Gy/#4-5	17	Bleeding (93.8), pain (66.7)	Acute (47.1), late (23.5), severe late (0)

^{a)}Proportion of patients, which showed complete or partial (>50%) improvement of symptom. ^{b)}Acute or late toxicity was not specified. ^{c)}Treatment outcomes or toxicities according to number of fractions were not specified.

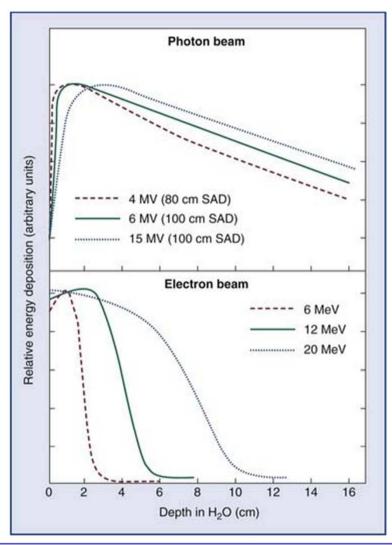
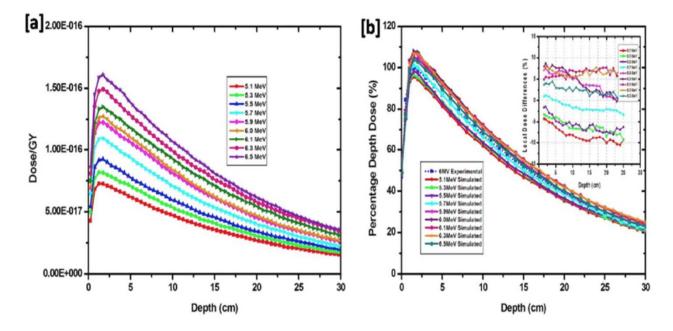



Figure 77-4. Typical depth-dose curves for megavoltage photon and electron beams commonly used in the therapy of head and neck cancers. The *upper panel* shows curves for 10 cm × 10 cm fields for a 4-megavolt (MV) (80-cm source axis distance [SAD]) linear accelerator (dashed line), a 6-MV (100-cm SAD) linear accelerator (solid line), and a 15-MV (100-cm SAD) linear accelerator (dotted line). The lower panel shows depth-dose curves for 10 cm × 10 cm fields for 6-megaelectron volt (MeV) (dashed line), 12-MeV (solid line), and 20-MeV (dotted line) electron energies.

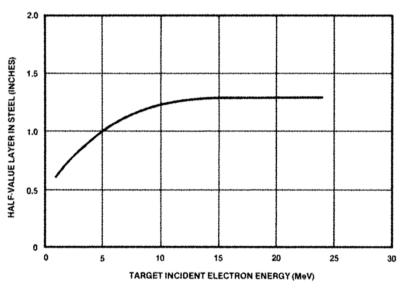


Fig. 4. [a] MC simulated Depth Dose values for various incident beam energies for 6 MV photon beams for the field size of 10×10 cm 2. The top line of the curve denotes the higher energy of 6.5 MeV whereas the bottom line of the curve denotes the lower energy of 5.1 MeV. [b] Comparison of MC simulated and measured PDD curves for various incident beam energies for 6 MV photon beams for the field size of 10×10 cm 2. The inset shows the local dose differences.

How to measure the energy of X-band LINAC

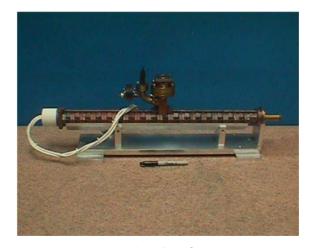
[전자빔 에너지 변화에 따른 철의 HVL 변화]

철에 X-ray 반가층(Half Value Layer)을 측정하여 전자빔 에너지를 측정하는 방법이다.

X-ray가 나오는 타겟 1m 떨어진 곳에 방사선량을 측정 할 수 있는 도시메터를 설치한다. 타겟과 도시메터 사이에 철판의 두께를 변화하여 방사선량을 측정한다. 이 때, 타겟에서 나오는 X-ray 양은 일정해야 한다. HVL 측정하기 위해 초기 철판 두께를 정하고 X-ray를 조사하여 방사선량을 측정한다(I_0). 초기 철판 두께보다 두껍게 하여 같은 양의 X-ray를 조사하여 방사선량을 측정한다(I). 철판의 두께를 두껍게 한 두께에서 초기 철판 두께를 빼준다(I). 아래의 공식을 이용하여 I0 값을 구한다.

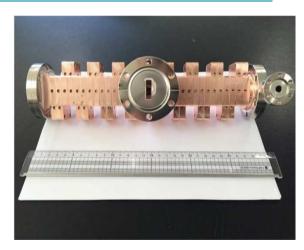
$$I = I_0 e^{-\mu d}$$
 ----- (1)

구한 값을 아래에 공식에 대입하여 반가층을 구한다.


$$HVL = 0.693/\mu$$
 ----- (2)

전자빔 에너지 변화에 따른 철의 HVL (2.74 cm)은 실험을 통해 정해져 있다.

방사선 치료기에 사용 된 선형가속기 비교


	Cyberknife	Tomography	Dual-head Gantry Therapy Machine
작동 주파수	9.4 GHz	2.856 GHz	9.3 GHz
가속관에 적용 된 기술	X-band RF Technology	S-band RF Technology	X-band RF Technology
전자빔 에너지	6 MeV	6 MeV	6 MeV
가속관 길이	58 cm	30 cm	27 cm
가속관 종류	Standing Wave, Pi/2 Side-coupled type	Standing Wave, Pi/2 Side-coupled type	Standing Wave, Pi/2 Side-coupled type
Dose Rate	800 cGy/min	850 cGy/min	500 cGy/min
가속관 시스템 무게 (방사선 차폐체 포함)	285 lb (~ 130 kg)	?	?

Cyberknife

Tomotherapy

SKKU-KAERI Dual-head Gantry Therapy Machine

