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Abstract. When a  conductor moves in a magnetic field, 
v x B acts like a  distributed  source. If the divergence of 
this vector is not zero, then  the divergence of E is not 
zero either and the conductor carries electrostatic charges 
whose fields are  as  important  as v x B. The  Faraday disk 
and  a  conducting sphere rotating in a  uniform magnetic 
field serve as examples. This little known effect plays a 
fundamental role in magnetohydrodynamic  phenomena. 

1. Introduction 

Imagine a body  that  moves  at a velocity Y in  a  region 
where there exist an electric field E and a magnetic 
field B. Then  an electric charge Q inside the  body feels 
a force Q(E + Y x B).  Thus, inside the  moving  body, 
the Y x B field acts like the electric field of  a  dis- 
tributed  source. 

We  are  concerned  here  with  conducting  media  that 
move  in magnetic fields. We shall see that they carry 
electrostatic  charges  whose field is just  as  important  as 
v x B. Indeed,  there  are  many cases  where the  two 
fields cancel each  other exactly a t  every point.  The 
Faraday disk and a conducting  sphere  rotating in  a 
magnetic field will serve as examples, but this  little 
known effect plays  a fundamental role  in magneto- 
hydrodynamics.  Another article will discuss the  func- 
tion of  these electrostatic  charges in the  dynamo 
mechanism  that  generates  the  Earth’s  magnetic field. 

We first consider a  general velocity v ,  but  most of 
our discussion will concern  the  rotation of rigid 
bodies, either  connected  to a stationary circuit or  not. 
We perform  our  calculations  both with  respect to a 
fixed reference frame  and with  respect to a rotating 
frame. 

RCumB. A l’interieur d’un conducteur en mouvement 
dans un champ magnetique, v x B agit comme une source 
distribuee. Si  la divergence de ce champ n’est pas nulle, la 
divergence de E est non-nulle egalement et le conducteur 
porte des charges  electrostatiques  dont le champ est aussi 
important  que v x B. Le disque de  Faraday, et une sphere 
conductrice  tournant  dans un champ magnetique 
uniforme, servent a illustrer notre  propos. Cet effet peu 
connu  joue un rde  essentiel dans les phenomenes 
magnetohydrodynamiques. 

2. Electrostatic charges in v x 6 fields 

It is well known  that  conductors  do  not  support  an 
electric space  charge;  any  extra  charge  deposited 
inside  moves out  to  the  periphery  almost  instan- 
taneously  (Lorrain et al 1988, p 75). However, few 
physicists realise that  conductors  do  carry  an electric 
space  charge when  subjected to a v x B field whose 
divergence is not  equal  to  zero. If the  conductor is 
isolated,  then it also  carries a compensating surface 
charge. 

2.1. Fixed reference  frame 

Choose a fixed reference frame S. With respect to  S, 
the electric field strength is E and  the  magnetic flux 
density B. If now a point inside  a body of conductivity 
Q moves a t  a velocity Y with respect to S, then  the 
electric current density at  that  point,  again  with res- 
pect to S, is 

The  body need not be rigid and all the  terms  can be 
both  space  and  time  dependent.  The Y x B field acts 
like the electric field of  a distributed  source  (Lorrain 
et a1 1988, p 494). 

J = u(E + Y x B). ( 1 )  
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Now  take  the divergence  of both sides. Under 
steady-state  conditions,  the divergence  of J is zero 
and, if the  medium is homogeneous, 

V * E =  - V . ( U  X B). ( 2 )  

Thus, if the divergence  of v x B is not  zero,  there 
exists an electrostatic  space  charge of  density 

Q = &,%V E = -&,%V (v X B) (3) 

= &,%[v (V X B) - B * (V X V ) ] .  (4) 

Observe  that  the  charge density is independent of the 
conductivity.  The relative permittivity of good  con- 
ductors is not  measurable,  but it is presumably of the 
order  of  three, like that of ordinary dielectrics. 

We  use p for  the  distance  to  the axis  of rotation, e 
(varrho)  for  the  space  charge  density, a for  the  con- 
ductivity,  and s (varsigma) for  the surface charge 
density. 

With  an ideal  dielectric, J and a would be both 
zero,  equation (1) would be meaningless, and these 
expressions  for e would  not  apply. 

One  author  argues  that, in conducting  media  such 
as  plasmas in space,  the  charge  density is in fact  zero 
because of  the  abundance of charge  carriers.  He 
concludes  that,  under  steady-state  conditions, E = 0. 
That is of course a  misconception; the  above  equations 
apply in any  medium  and E # 0 if the divergence of 
v x B Z O .  

We  shall see that, if the  conductor is isolated,  sur- 
face charges  compensate  for  the  space  charge. 

If the fields are  time  dependent,  and if the  medium 
is not  uniform,  then  there still exists an electric space 
charge,  but  there  are  further  terms  on  the  right-hand 
side of  equation (4). 

It follows from  equation (1) that 
E = - ( v  x B) + J/a. ( 5 )  

The  vectors J and B are  not  independent;  they 
satisfy the Maxwell equation 

V X B = h J  (6) 

assuming  that  the  medium is non-magnetic,  and 
under  steady-state  conditions. 

Now  consider a rotating  body. If a rigid axisym- 
metric  conducting  body  rotates  at  an  angular velocity 
W about  the z axis  in any  magnetic field, then 

v = u p $  v x v = 2wi (7) 

where 4 and 2 are  the  unit  vectors  pointing, respec- 
tively, in the positive 4 and z directions.  The 
azimuthal  current  comes  from  the  rotation of the 
space  charge,  and possibly also  from  an  internal 
source. If there is no  internally  generated azi- 
muthal  current,  then  the  conductor need not  be axi- 
symmetric. 

Let us calculate  the  curl of J for a  passive rotating 
conductor  that is not necessarily axisymmetric.  From 

equation (l), in  a homogeneous  medium, 
V x J = a [ V x E + V x ( v x B ) ]  (9) 

= a[-aB/at  + v X (W X B)]. (10) 
Under  steady-state  conditions  the  time  derivative 
vanishes and 

V x J =  aV x (v x B). ( 1  1) 

Suppose  now  that  our  rotating  conductor is not 
connected  to a stationary circuit through sliding con- 
tacts.  Suppose  also  that  the  magnetic field is both 
uniform  and parallel to  the axis  of rotation.  Both W 

and B are  constant.  Then 
V x J = a V x ( w p $ x B i ) = O .  (12) 

If  the  magnetic field is not  uniform,  but axisymmetric, 
then  it  turns  out  that  the  curl is again  zero: 

V x J = v ( V * B ) = O .  (13) 

Now, in our  isolated  rotating  conductor,  currents 
can  only flow around closed  circuits. Then  the line 
integral of J around  any closed  circuit is equal  to zero 
and  there  are  no  induced  currents: 

J = O  E =  - ( W  X B). (14) 
In  this  instance,  the field of  the  electrostatic  charges 
cancels the v x B field exactly a t  every point. 

This is not a new result (van Blade1 1984), but  it is 
important  for  the following reason. Since there  are  no 
induced  currents in the  rotating  conductor,  the  mag- 
netic field is not  disturbed  and  the lines of B are  not 
dragged  along by the  moving  conductor,  as  one  would 
expect from Alfven’s ‘theorem’ (Alfven and  Faltham- 
mar 1963). Another  paper will discuss this  ‘theorem’ 
at  some  length. 

If the  applied  magnetic field is symmetrical  about 
an axis that  forms  an  angle with the axis  of rotation, 
then we can  consider  it  to be composed  of an axi- 
symmetric field B,,, plus a transverse field B , f .  Then 

V x J =  aV x [v x (B,,, + B , i ) ]  (1 5 )  
= aV x ( w p ~ , $  x a) (16) 

= aV x ( w p B , c o s ~ i )  (17) 

and  there  are  induced  currents in the  conductor. 

2.2. Rotating reference frame 
Rotating reference frames  are  troublesome in  relativ- 
ity  because  they are  non-Euclidian  and because  clock 
rate  depends  on  the  distance  to  the axis  of rotation 
(Msller 1974). Fortunately,  the  situation here is simple 
because we need only  compare  the values  of the 
various  variables  at,  and in the  immediate  neighbour- 
hood  of, a given point in the  two  frames. 

We use unprimed  variables in the  inertial reference 
frame S, as  above.  Primed variables at a given point 
P’ in the  rotating reference frame S’ apply in the local 
inertial reference frame S” occupied  momentarily by 
P’ (Msller 1974). Then  the  relations between the 
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primed and unprimed variables are those of special 
relativity (Lorrain et a1 1988, pp 287, 303, 321). We 
disregard terms of the  order of v2/c2, where c is the 
speed of light. Then 

E' = E + v X B = J ' / d  a' = a (18) 
J' = J B' = B. (19) 

Also, in a uniform medium, 
v X J' = av X E T  = - a a ~ p t t .  (20) 

Recalling now that, in an isolated moving conductor, 
there  are no induced currents if the curl of the  current 
density is zero, this equation shows that there are 
induced currents in an isolated moving conductor 
only if the magnetic induction in the reference frame 
of the  conductor is time dependent.  This is  in agree- 
ment with equations (13) and (14). 

The space charge density is the same in the two 
reference frames if the  azimuthal  current results only 
from  the  motion of the space charge. 

3. The Faraday disk 

Figures 1 and 2 show schematic diagrams of a 
homopolar motor  and of a  homopolar  generator, as 
viewed from  a fixed reference frame  (Lorrain et a1 
1988, p  399t). Both devices are also called Faraday 
disks. We have shown single brushes on the axis and 
on the rim, but there are in fact continuous brushes all 
around. Also, we have not shown the coils that gen- 
erate  the applied magnetic fields B. At any point in the 
disks, v 2  << c'. 

Assume that the axial magnetic field B is that of a 
long solenoid, and is thus uniform.  This  assumption is 
not realistic, but  it makes the calculation simple and 
instructive. We may set J+ = 0 in equation (8) 
because, as we shall see below, the convection current 
of the  rotating space charge generates an opposing 

Figure 1. Homopolar motor. 

?Note  that in this  reference B is negative. 

't 

Flgure 2. Homopolar generator. 

axial magnetic field that is negligible. We disregard 
the magnetic field  of the  radial  current  through the 
disks because it is azimuthal, which makes its v x B 
equal to zero. Set B, = B in equation (8). 

Say B and CO are the same in figures 1 and 2. Then 
v x B and Q are  the same and, from  equation (8), the 
space charge density is uniform and negative: 

e = - ~ E , Q w B .   ( 2 1 )  

This space charge density is independent of the  con- 
ductivity, except if a were zero, and it is independent 
of whether the switch SW in figure 2 is open  or closed. 

The  rotation of this space charge generates an 
azimuthal convection current of density ea whose 
magnetic field opposes the  above B. Since that B is 
uniform, it is easy to calculate the magnetic induction 
B, of this azimuthal convection current at the centre 
of the disk. Setting R and S equal to the  outer  radius 
and  to the thickness of the disk, respectively, we find 
that, for S << R, 

since w2sR is  of the  order of v 2 ,  and vz/c2 << 1 by 
hypothesis. 

Now disregard end effects. This is equivalent to 
stretching the disk into a long cylinder. This assump- 
tion does not invalidate the above approximation. 
Then 

Observe that, here, 
E, = - ( U  X B). 

The v x B field 'pumps' conduction electrons in the 
- j direction, and their space charge cancels the 
v x B field exactly at every point in both figures 1 and 
2, whether the switch SW of figure 2 is open or closed. 

The simplest case is that of the  generator, with SW 
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open.  Then 
J =  0, E + v  X B = O  E = E p .  (25) 

A surface charge of density E , E ~ ~ B R  compensates for 
the negative space charge  without affecting the electric 
field inside the cylinder. 

Now close the switch SW in the circuit of the 
generator.  Conduction electrons escape at the axis 
into  the external circuit, where the v x B is zero, and 
return at the rim. The field J/a in the disk points in the 
direction of the rim. 

The case of the motor is similar, except that  Jpoints 
in the - j direction: current flows  in the direction of 
v x B in the generator, and in the opposite direction 
in the motor. 

The  current in the  homoplanar motor depends not 
only on the characteristics of the motor, but also on 
the source that feeds it and on its mechanical load, 
while the  current in the  generator depends similarly 
on  the applied torque  and on  the load resistance. 

Let us now calculate the  potentials V and A for 
the motor.  From Lorrain et al (1988, p 349), under 
steady-state  conditions and for  a long solenoid, 

A = (BPI216 aA/at  = o (26) 
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Since J = Z/(2nps), where the  current Z is independent 
of the radius, 

The quantity p. is a  constant of integration; we have 
arbitrarily set the second term equal to zero at p = po. 

In the rotating reference frame, from  Lorrain et a1 
(1988, pp 287,  303,  321), and from  equations (26) and 
(2819 

= A - - A  + --In-$. w2p2 o p 2 J  p - 
C2 c2 0 Po 

In  this last equation the second term on  the right is 
proportional to v 2 / c 2  and is therefore negligible. The 
third term in negligible for the same reason because J 
is proportional to the sum of two terms, E + v x B, 
that are of the same order of magnitude.  Thus 
A' = A aA'/at' = o E' = - V V ' .  (33) 

Figure 3. 

4. Conducting  sphere  rotating in  a  uniform 
magnetic  field 

Figure 3 shows a passive conducting sphere of radius 
R rotating at an  angular velocity w in a uniform 
magnetic field B parallel to the axis of rotation. The 
sphere is uncharged. As in section 2.1, there are no 
induced currents and equations (14) apply. It will  be 
instructive to discuss this simple case  (see also Thom- 
son 1893, Mason and Weaver 1929, van Blade1 1984). 

We assume that the sphere is rigid: a  further  paper 
will discuss the effect  of differential rotation with 
reference to the  Earth's  core. 

We can again disregard the  azimuthal  current 
associated with the rotation of the space charge. Then 
equation (21) applies: the space charge is uniform 
throughout  the sphere, and negative. As we shall see, 
positive surface charges maintain the net charge equal 
to zero. This negative space charge establishes a radial 
electric field 

The electrostatic field  of the space charge now can- 
cels the v x B field only to a  certain  extent, first 
because the electric field  is along - P ,  while the v x B 
field  is along fi, and second because the magnitudes of 
the two fields are not  equal.  Equations (14) still apply, 
however: the combined electrostatic fields  of the space 
and surface charges cancel the v x B field. 

We can find the surface density c of electrostatic 
charge as follows. From the  Gauss law, 

c = Er.outside - Er'% Er,ins>de. (35) 
Inside the sphere, in cylindrical coordinates, 

E= - (  V X B) = - ~ p B j  (36) 
or, in spherical coordinates, 

E = - wr  sin  BB(sin BP + cos 06) (37) 
Er,insrde = - wrB sin2B. 

Also, inside the sphere, the electric field  is radial 
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and the potential along the axis is uniform. Call that 
potential V,. Then, on the surface, from equation 
(361, 

Vsurface = V, + wBp2/2 = V, + wBR2sin28/2. (39) 

Outside the sphere, the space charge density is zero, 
Laplace’s equation applies, and we can expand V as a 
series  of Legendre polynomials (Lorrain et al 1988, 
p 225): 

The first term, which is the  monopole  term, implies 
the existence of a net charge on the sphere. That 
potential is  of no interest; it would apply only if the 
sphere carried a net charge. The second, dipole, term 
implies a charge asymmetry between the  upper and 
lower halves of the sphere. This term is also zero 
because both E and E, are symmetrical about the 
equatorial plane. Let us therefore set the  third, or 
quadrupole, term of equation (40) equal to  the V of 
equation (39) at r = R: 

V’ + +oBR2sin20 = - B, 3cos28 - 1 
R3 2 (41) 

Upon matching corresponding terms, we find that 

B2 = -wBRS/3 V, = -wBR2/3. (43) 

Thus 

Finally, from  equations (35), (38), and (45), the 

= E,,wBR[(Q + E,) sin2 0 - I]. (46) 

The surface charge density is positive in the region of 
the equator,  and negative near  the poles. It is  easy to 

surface charge density is  given  by 

show that the net surface charge is equal to minus the 
space charge. 

The value of the potential inside the sphere follows 
from equations (36) and (43): 

(47) 

The potential is equal to zero on  an axial cylindrical 
surface whose radius is equal to (2/3)’’2 R. 

5. Conclusion 

We have therefore shown that, if a  conducting 
medium moves in a magnetic field, and if the diver- 
gence  of the ZJ x B field  is not zero, then there exists 
an electrostatic space charge and its associated electric 
field. If the conductor is isolated, then surface charges 
correct  for any charge imbalance. If the conductor is 
isolated and if the magnetic field  is axisymmetric, then 
the field  of the electrostatic charges cancels ZJ x B 
exactly at every point, there are no induced currents, 
the  rotating  conductor  does not affect the magnetic 
field, and the Alfven ‘theorem’ does  not  apply. 
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