
4.35R (10)
Adb = z(0z

is almost exclusively due to the resistance of R of the
inner conductor, rising as plotted in Fig. 8 with the wire
length, which in turn is proportional to the core diame-
ter.

3. Parts of the magnetic field around the coiled inner
conductor will cause eddy-current losses in the closed
turn of the outer conductor, unless that conductor is
either far enough away or braided of separately insu-
lated wires.
A suitable compromise value for the core diameter,

c=0.28 centimeter = 0.110 inch, is marked in Figs. 6, 7,
and 8; it yields an impedance of 89 per cent of the op-
timum, but the corresponding delay is reduced to 49 per
cent, the wire resistance to about 65 per cent, and the
outer conductor has then a safe diameter 2.8 times that
of the coil. It may be noted that the value of c so de-
termined only depends on the value of a and k, but its
choice is not affected if, for example, another impedance
is desired. Fig. 6 shows that, in such cases, choice of a
different wire gauge, wound on the same core diameter,
is the only, and the most efficient, change required. The
impedance rises by over 10 per cent each time the wire
gauge is made one step higher (finer wire); the delay
rises in the same proportion, but the series resistance R

rises by almost 35 per cent, and with it the transmission
loss by about 20 per cent. At present, choice of American
Wire Gauge No. 32 is thought to be a wise compromise,
yielding 1000 ohms impedance with safe mechanical
strength.
A cable based on this design is manufactured by the

Federal Telegraph and Radio Corporation in Newark,
New Jersey, as type RG-65/U. Its specifications are as
follows:

Flexible plastic core, 0.110 inch ± 0.010 inch diameter.
Close-wound inner conductor, No. 32 F Formax.
Spacer of solid polyethylene extruded on this to an

outer diameter, 0.285 inch ± 0.010 inch.
Outer conductor braided of bare copper wire, Ameri-

can Wire Gauge No. 33.
Jacket of vinylite, 0.030 inch.
Over-all diameter, 0.405 inch +0.010 inch.
Its electrical data are:
Impedance Z =950 ± 50 ohms.
Capacitance C=42 micromicrofarads per foot.
Direct-current resistance = 7 ohms per foot.
Attenuation

5.5 decibels per 100 feet at 1 megacycle.
10.2 decibels per 100 feet at 3 megacycles.
21.5 decibels per 100 feet at 10 megacycles.
40 decibels per 100 feet at 30 megacycles.

Delay T=0.042 microsecond per foot at 5 mega-
cycles.

A Study of Locking Phenomena in Oscillators *
ROBERT ADLERt, ASSOCIATE, I.R.E.

Summary-Impression of an external signal upon an oscillator of
similar fundamental frequency affects both the instantaneous ampli-
tude and instantaneous frequency. Using the assumption that time
constants in the oscillator circuit are small compared to the length of
one beat cycle, a differential equation is derived which gives the
osciator phase as a function of time. With the aid of this equation,
the transient process of "pull-in" as well as the production of a dis-
torted beat note are described in detail.

It is shown that the same equation serves to describe the motion
of a pendulum suspended in a viscous fluid inside a rotating con-
tainer. The whole range of locking phenomena is illustrated with the
aid of this simple mechanical model.

I. INTRODUCTION

rfHE BEHAVIOR of a regenerative oscillator un-
der the influence of an external signal has been
treated by a number of authors. The case of syn-

chronization by the external signal is of great practical
interest; it has been applied to frequency-modulation
receivers' 2 and carrier-communication systems,3 and
formulas, as well as experimental data, have been given

* Decimal classification: R133 XR355.91. Original manuscript re-
ceived by the Institute, October 2, 1945; revised manuscript received
January 16, 1946.

t Zenith Radio Corporation, Chicago, Illinois.
l C. W. Carnahan and H. P. Kalmus, "Synchronized oscillators as

for the conditions required for synchronization.4-8 The
other case, arising when the external signal is not strong
enough to effect synchronization, is of practical impor-
tance in beat-frequency oscillators. Here the tendency
toward synchronization lowers the beat frequency and
produces strong harmonic distortion of the beat note.4-8

It is the purpose of this paper to derive the rate of
phase rotation of the oscillator voltage at a given in-
stant from the phase and amplitude relations between
the oscillator voltage and the external signal at that

frequency-modulation receiver limiters," Electronics, vol. 17, pp.
108-112; August, 1944.

2 G. L. Beers, "A frequency-dividing locked-in oscillator fre-
quency-modulation receiver," PROC. I.R.E., vol. 32, pp. 730-738;
Elec. Eng. December, 1944.

3 D. G. Tucker, 'Carrier frequency synchronization," Post Office
Elec. Eng., vol. 33, pp. 75-81; July, 1940.

4 E. V. Appleton, "The automatic synchronization of triode
oscillators," Proc. Camb. Soc., vol. 21, pp. 231-248; 1922-1923.

5 D. G. Tucker, "The synchronization of oscillators," Elec. Eng.,
vol. 15, pp. 412-418, March, 1943; pp. 457-461, April, 1943; vol. 16,
pp. 26-30; June, 1943.

6 D. G. Tucker, "Forced oscillations in oscillator circuits," Jour.
I.E.E. (London), vol. 92, pp. 226-234; September, 1945.

7S. Byard and W. H. Eccles, "The locked-in oscillator," Wireless
Eng., vol. 18, pp. 2-6; January, 1941.

8 H. G. Moller, "tber Storungsfreien Gleichstromempfang mit
den Schwingaudion," Jahr. fir Draht. Teleg., vol. 17, pp. 256-287;
April, 1921.
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instant; in other words, to find a differential equation
for the oscillator phase as a function of time. This equa-
tion must be expected to describe the case of synchron-
ization where any transient disturbance vanishes in
time, giving way to a steady state in which phase differ-
ence between oscillator and external signal is constant.
It must also give frequency and wave form of the beat
note, in case no synchronization occurs. To cover both
cases, it must contain a parameter which decides
whether or not the transient term will vanish in
time, thus producing an equivalent to the criteria for
synchronization derived by other methods. Finally,
the equation must suggest a mechanical analogy simple
enough to give a clear picture of what actually happens
in an oscillator when an external signal is impressed
upon it.

In the following analysis, it is assumed that the im-
pressed signal and the free oscillation are of similar fre-
quency. Locking effects at submultiple frequencies are
analogous in many respects, but the analysis does not
apply directly.

II. CONDITIONS FOR BANDWIDTH AND TIME CONSTANTS
In attempting to derive the rate of phase rotation at

a given instant from no other data but phase and ampli-
tude relations at that same instant, we assume implicitly
that there are no aftereffects from different conditions
which may have existed in the past. The value of such
an assumption lies in the fairly simple analysis which it
permits. But our experience with practical oscillators
warns us that it may not always be justified. In this sec-
tion we will study the requirements which an oscillator
must meet so that our analysis may be applicable.

Fig. 1-Oscillator circuit.

If an oscillator is disturbed but not locked by an ex-

ternal signal, we observe a beat note-periodic varia-
tions of frequency and amplitude. If these variations are

rapid, a sharply tuned circuit in the oscillator may not
be able to respond instantaneously, or a capacitor may
delay the automatic readjustment of a bias voltage. In
either case, our assumption would be invalid. To vali-
date it, we shall have to specify a minimum bandwidth
for the tuned circuit and a maximum time constant for
the biasing system. To establish these limits, let us

study the circuit shown in Fig. 1, with the understand-
ing that the impressed signal is not strong enough to
cause locking. We will use the following symbols:

Angular frequencies:
COO = free-running frequency
-=frequency of impressed signal
-ooo-w = "undisturbed" beat frequency

-=instantaneous frequency of oscillation
Acw-co, = instantaneous beat frequency.

Voltages:
Ep=voltage across plate load
E =voltage induced in grid coil
Ei=voltage of impressed signal
EO=resultant grid voltage
Q =figure of merit of plate load L, C, R.

If the oscillator were undisturbed, the only frequen-
cies present" would be coo and co,, producing a beat fre-
quency Acoo. Actually, a lower beat frequency is ob-
served, so that the value of X averaged over one com-
plete beat cycle is shifted toward co,. We cannot yet
predict, however, how large the excursions of the mo-
mentary value of co might be. We may think of co as of a
signal which is frequency modulated with the beat note
Aco; this beat note is known to contain strong harmonics
if the oscillator is almost locked, so that X can be repre-
sented by a wide spectrum of frequencies extending to
both sides of its average value.

If the plate circuit is to reproduce variations of X
without noticeable delay, each half of the pass band
must be wide compared to the "undisturbed" beat fre-
quency. For a single tuned circuit we can write

COO
->>Ao.(1
2Q

Without reference to any specific type of circuit, we
can say that the frequency of the external signal should
be near the center of the pass band.
Up to this point, we have assumed that the circuit of

Fig. 1 operates as a linear amplifier. But it is well
known'0 that some nonlinear element must be present to
stabilize the amplitude of any self-excited oscillator.
Curved tube characteristics may produce a nonlinear
relation between grid voltage and plate current, distort-
ing every individual cycle of oscillation ("instantaneous"
nonlinearity); plate-current saturation is an example for
this case. On the other hand, a nonlinear element may
control the transconductance as the amplitude varies,
thus acting like an automatic volume control; the relation
between grid voltage and plate current may then re-
main linear over a period of many cycles. Oscillators
stabilized by an inverse-feedback circuit containing an
incandescent lamp provide perhaps the best example
for this type. The combination of CT and RT in the
circuit of Fig. 1 functions also as a controlling element
of the automatic-volume-control type; at the same time,
some nonlinearity of the "instantaneous" type will gen-
erally be present in this circuit.
We want the instantaneous amplitudes of the plate

9 "Frequency" always means the angular frequency.
10 B. van der Pol, "The nonlinear theory of electric oscillations,"

PROC. I.R.E., vol. 22, pp. 1051-1086; September, 1934.
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current and of the voltage E fed back to the grid to be
the same as if the total grid voltage E. at that instant
had been stationary for some time; earlier amplitudes
should have no noticeable aftereffects. How fast the
amplitudes vary depends on the beat frequency. The
amplitude control mechanism should, therefore, have a
time constant which is short compared to one beat
cycle.11 (For the circuit of Fig. 1 this time constant
would be of the order T= CTRT.) Since the shortest pos-
sible beat cycle corresponds to the "undisturbed" beat
frequency Aoo, we can write

T <<-* (2)
wo

If the oscillator contains only amplitude limiting of
the "instantaneous" type, this condition is inherently
satisfied. An oscillator of the pure automatic-volume-
control type will show the same locking and synchroniz-
ing effects as long as it fulfills12 condition (2). But when
the amplitude control mechanism acts too slow to ac-
commodate the beat frequency, phenomena of an en-
tirely different character appear. Such an oscillator
would fall outside the scope of the mathematical analy-
sis presented in the following, but its special character-
istics merit brief discussion.

In an oscillator of the pure automatic-volume-control
type, let us represent all elements outside the tuned cir-
cuit L, C, R by a negative admittance connected in
parallel with L, C, R. The numerical value of this nega-
tive admittance is proportional to the gain in the oscilla-
tor tube. Over a long period of time, the automatic-
volume-control mechanism will so adjust the gain that
the negative admittance becomes numerically equal to
the positive loss admittance of L, C, R. At this point the
net loss vanishes and the prevailing amplitude is main-
tained indefinitely, as if the tuned circuit had infinite Q.
Now, let an external signal of slightly different fre-

quency be superimposed upon this oscillation, so that
the resulting amplitude varies periodically. Then if the
automatic-volume-control mechanism acts so slowly that
no substantial gain adjustments can be made within one
beat cycle, that value of negative admittance which re-
sulted in zero net loss will be retained. In other words,
the system acts as if the Q of the plate circuit were still
infinitely large. An external signal El with a frequency
very close to w6 will then produce a large near-resonant
amplitude, increasing further the closer w, approaches
wo. This magnified signal of frequency coi, superimposed
on the original signal of frequency w0, which is still main-
tained, produces amplitude modulation of a percentage
much greater than would correspond to the ratio E1/E.

Evidently, similar effects could be observed if the
tuned circuit had of itself a Q high enough to violate
condition (1). This suggests an alternative way of stat-

11 1/Awo, or the time required for one radian of a beat cycle, is
used in the following.

12 For synchronization on a subharmonic of the impressed signal,
nonlinearity of the "instantaneous" type is necessary.

ing that condition. The tuned circuit will "memorize"
phase and amplitude for a period of the order T', its
"decay time." This period must be short compared to a
beat cycle1'

1
T' <<- -

AoO
(la)

For a simple tuned circuit, T'= (2Q/wo) hence
(oo/2Q)>Acoo which is the same as (1).

If an oscillator fulfills both conditions (1) and (2), the
amplitude modulation arising from a given signal El is
solely determined by the ratio E1/E and by the shape
of the amplitude-limiting or automatic-volume-control
characteristic. Most oscillators operate in a fairly flat
part of this characteristic, so that the amplitude actually
varies less than in proportion to E1/E. Keeping this in
mind, we further assume a weak external signal

E1 << E (3)
so that the amplitude variations of E will also be small
compared to E itself.
A surprisingly large number of practical cases meet

all three conditions.

III. DERIVATION OF THE PHASE AS A FUNCTION OF TIME

Let Fig. 2 be a vector representation of the voltages
in the grid circuit as they are found at a given instant.

dot
dtL

,+

Fig. 2-Vector diagram of instantaneous voltages.

Furthermore, let E1 be at rest with respect to our eyes;
any vector at rest will therefore symbolize an angular
frequency wi, that of the external signal, and a vector
rotating clockwise with an angular velocity (da/dt) shall
represent an angular frequency wi+(da/dt), or angular
beat frequency of

da
A d=

dt

relative to the external signal.
It is important to keep in mind that this vector dia-

gram shows beat frequency and phase. Many high-fre-
quency oscillations may occur during a small shift of
the vectors. We call (da/dt) the instantaneous angular
beat frequency; we would count (1/2r) (da/dt) beats per

second if this speed of rotation were maintained. Ac-
tually, (da/dt) may vary and a complete beat cycle may
never be accomplished.
With no external signal impressed, ED and E must co-

incide: the voltage E returned through the feedback

(4)
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circuit must have the same amplitude and phase as the
voltage E applied to the grid. Those nonlinear elements
which limit the oscillator amplitude will adjust the gain
so that IE| = IE,I; but the phase can only coincide at
one frequency, the free-running frequency coo. At any
other frequency the plate load would introduce phase
shift between E and E. Fig. 3 shows a typical curve of
phase shift versus frequency for a single tuned circuit
as assumed in Fig. 1. The amount of lead or lag of the
voltage drop across such a circuit with respect to the
current flowing through it is plotted. For our oscillator

lag

leGLd

El rda 1
- -sina = A - --^olI
E Ldt J

(9a)

and substituting

E1 1

E A

we obtain

da

dt
B sin a + Aco. (9b)

Adding the impressed frequency co, on both sides, we
may also write

CO = - B sin a + wo.

X

Fig. 3-Phase versus frequency for a simple tuned circuit.

circuit, we may take the curve to represent the lead or
lag of E with respect to E as a function of frequency.

Let now an external voltage E1 be introduced, and let
Fig. 2 represent the voltage vectors at a given instant
during the beat cycle. Evidently, the voltage E returned
through the feedback circuit is now no longer in phase
with the grid voltage E; the diagram shows E lagging
behind E by a phase angle 4.
No such lag could be produced if the oscillator were

still operating at its free frequency wO. We conclude that
the frequency at this instant exceeds coo by an amount
which will produce a lag equal to 4, in the plate circuit.
With E1«<E according to our third condition, inspec-

tion of Fig. 2 yields

El sin (- a) El .
E= = --sina.

E E (5)

The instantaneous frequency w follows from Fig. 3.
But our first condition implies that the pass band of the
plate circuit is so wide that all frequencies are near its
center. So we are using only a small central part of the 4
versus co curve which approaches a straight line with the
slope

do
A =-. (6)

Then, if wO is the free frequency, the phase angle for
another frequency co close to it will be

(9c)

This means physically that the instantaneous frequency
is shifted from the free-running frequency by an amount
proportional to the sine of the phase angle existing at
that instant between the oscillator and the impressed
signal. The shift is also proportional to the impressed
signal E1, but inversely proportional to the oscillator
grid amplitude E and to the phase versus frequency
slope A of the tuned system employed.

For a single tuned circuit, textbooks give

tan 4 = 2Q

and for small angles we can write

(10)

C - coo
q = 2Q

COO

Hence, substituting into (6)

2Q
A =

CO

and

E1 wo

E 2Q

(lOa)

(lOb)

(lOc)

Equation (9b) reads, therefore, for a single tuned cir-
cuit,

da E1 co .
= - sin a + Acoo.

dt E 2Q
(11)

The possibility of a steady state is immediately ap-
parent; (da/dt) must then be zero, so that in the steady
state

4 = A(co- o). (7)
The instantaneous beat frequency Aco is the difference

between co and the impressed frequency wi. Setting
again Acoo = coo- wi, we have

4,=A(co-coo) =A [(w-i)-(wo-coO>]=A [Aco-Acoo]. (8)
Now, substituting (5) on the left and (4) on the right,

we find

(12a)O El wo i.-E= OO sin a + Awo
E 2Q

or

E Awo
sin a = 2Q -. -

E1 wo
(12b)

This gives the stationary phase angle between oscilla-
tor and impressed signal. Since sin a can only assume

,r (A)
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values between +1 and -1, no steady state is possible
if the right side of (12b) is outside this range. This gives
the condition for synchronization

E Aco0
2Q < 1 (13a)

E1 coo

or

E > 2Q |-. (13b)
E (00

Because of its practical importance for receiver ap-
plications, another form of this condition shall be con-
sidered. E is the voltage which the oscillator (Fig. 1)
produces across its grid coil; but if a locked oscillator
is used to replace an amplifier, the voltage Ep across the
plate circuit is the one that matters, since (Ep/E1) repre-
sents the total gain. Now the tuned circuit is equivalent
to a plate load Rp = QV(L/C), so that for a given trans-
conductance gm

p= EcgmQ
Combining this with (13b), we obtain

-< 2 gm Al
El 2Acoo C

(13c)

It is interesting to note that Q, the only circuit con-
stant entering into (13b) where the grid voltage E is
of interest, cancels out in (13c) where the plate voltage
Ep is determined.

For an oscillator which contains a plate load other
than a simple tuned circuit, the condition for synchroni-
zation may be written

(13d)-> AAoojE

whereby A =(dq/dw) for the particular type of plate
load.

IV. APPROXIMATION FOR THE PULL-IN PROCESS
Turning now to the transient solution of the differen-

tial equation (9b), we examine first the case Acoo = 0. This
rneans that the free-running frequency equals that of the
impressed signal and that locking will eventually occur
for any combination of voltages and circuit constants as
evidenced by all forms of (13).
The equation

da
-= -B sin a (14a)
dt

shows what happens when the external signal E1 is sud-
dently switched on with an initial lag a, behind the
free-running oscillator. Equation (14a) is quite similar to

da
d = -Ba (14b)
di

and actually goes over into this form when a is small.
Equation (14b) has the familiar solution

a = al -B (14c)

and this means physically that the oscillator phase
"sinks" toward that of the impressed signal, first ap-
proximately, and later accurately as a capacitor dis-
charges into a resistor. The speed of this process,
according to (lOc) which defines B, is proportional to the
ratio of impressed voltage to oscillator voltage and to the
bandwidth of the tuned circuit.

If the free-running frequency is not equal to that of
the impressed signal, but close enough to permit locking
for a given combination of constants according to (13),
the manner in which the steady state is reached must
still resemble a capacitor discharge. It is particularly
worth noting that the final value a.O is always ap-
proached from one side in an aperiodic fashion. The ac-
curate solution for this case will be given later.

V. PHENOMENA OUTSIDE THE LOCKING RANGE
To obtain a general solution giving a as a funcion of

time, it is necessary to integrate (9b). We first substitute

Aw*
K =-

B

which means for a single tuned circuit

E Acoo
K = 2Q- --

E co

(1Sa)

(15b)

By comparing with (13a) and (13d), we find that the
condition for synchronization can now be written

IKI <1.
Substituting into (9b) we obtain

da
= - B(sin a - K).

dt

Integration gives

a 1 V\K-1 B(t-t.t)
tan = -+-4 __taan -VK2 -1

2 K K 2

or
-I1\IK[+ n-1 B(t-to) ]

a= 2 tan-' -+ - tan \IK2 -1
_K K 2_

(lSc)

(16)

(17a)

(17b)

wherein to is an integration constant.
Let us now assume that the condition for synchroniza-

tion is not fulfilled, so that K| >1. This makes
-v/K2-1 real. With continually increasing t, the term
[B(t-to)/2]V/K2~2-1 will pass through ir/2, 37r/2, etc.,
and the tangent on the right side of (17a) will become
+ 0, - oo, etc. in succession; at these instants a/2
must also be 7r/2, 3r/2, etc., although it will assume
values different from [B(t-to)/2]x/K2- 1 during the
intervals.
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So, while [B(t-to)/2]N/K2 -1 increases uniformly
with time, a/2 will grow at a periodically varying rate;
but the total length of a period must be the same for
both. The average angular beat frequency the actual
number of beats in 2r seconds-is therefore

Ac = B-/K2- 1 (18a)

or, substituting from (15a),

Ax- Aco (18b)
K

Aco0 is that beat frequency which would appear if the
oscillator maintained its free frequency; V/K2-1i/K
approaches unity for large values of K, far from the
point where locking occurs; but it drops toward zero
when this point (K =1) is approached.

Fig. 4 shows a plot of the average beat frequency Aco
versus the undisturbed beat frequency Awo as computed
from (18b).

/S//
//

K- /a"
// KiAK+1

//
//

//

Fig. 4-Reduction of beat frequency due to locking.

In the intervals between the arguments ir/2, 3r/2,
etc., the two angles in (17a) cannot be the same because
of the factor N/K2-1/K with which one tangent is
multiplied, and the addition of 1/K. For large values
of K, 1/K vanishes and the factor approaches unity,
so that the rate of increase of a/2 with time will vary
by a smaller percentage as the beat frequency increases;
but (16) shows that da/dt must still vary between
B(K-1) and B(K+1). Now, BK=Awo, according to
(15), and B represents the highest difference Z\CmaC
for which locking can occur (K= 1 for B =Awo). So the
instantaneous beat frequency Aco will vary periodically
between Acoo -Amax and AWo+Acmax as long as Acoo ex-
ceeds ACmax.

t)max itself is determined by (13). It is

for any type of plate load for which A =d/dwd.
If K is only slightly above unity, the factor

V\K2- i/K falls far below unity, and the phase
angle between E, and E increases at an extremely
nonuniform rate. Inspection of the vector diagram in
Fig. 2 gives the resultant grid voltage Eo=E-E1 cos a.
To illustrate the wave form of the resultant beat note

Xcos cx(t)

N/ NJ
Fig. 5-Wave form of beat note for cos a(t).

the function cos a(t) is plotted in Fig. 5. Operation very
close to locking is assumed. Other wave forms are pos-
sible in beat-frequency oscillators where the beat note
is produced in a separate detector; a constant phase
shift may then be added to a on the way to the detector.
Fig. 6 shows an example with a phase shift of ir/2: the

Fig. 6-Wave form of beat note for cos [a(t) +-].
2

function plotted is cos [a(t) + r/2 ] which equals - sin
xx(t).

VI. ACCURATE ANALYSIS OF THE PULL-IN PROCESS

To make the discussion of (17a) complete, we may

finally apply it to the case of an oscillator pulling into
the locked condition, _K| <1. The term V/K2- 1
then becomes j- v/i-K2. By use of the relation
tanh x -j tan jx, equation (17a) is transformed'3 into

a 1 v/1 -K2 B(t-to)
tan tanh -V/- K2. (20a)

2 K K 2

The integration constant to permits one to fit the
equation to the initial phase difference a,, which exists
when the external signal is switched on.

As t increases, the functions tanh and coth go assymp-

totically toward unity. The steady state must therefore
be given by

a 1- V/i -K2
tan- =

2(or) K
(20b)

Wv El
Amax =

2Q E
or

co El /L
Amax = Egm A!

for a single-tuned circuit, and

1 E
Awmax = *-

A E

(19a)
Using (16) we identify K with sin a. for the steady

state. Hence v\/i-K2=cos a.e, and (20b) becomes
(1 -cos a.)/sin a,,,,which is indeed equal to tan (ao,,/2) by

(19b) a trigonometrical identity.

VII. A MECHANICAL MODEL

In conclusion, let us construct a mechanical model to

(19c) 1 Equation (20a) holds for sin ai>k. Otherwise, substitute coth
for tanh.
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illustrate the processes which we have derived. To pro-
vide a full analogy, the model must follow the same dif-
ferential equation (9b)

da
-= - B sin a + Awo.
dt

Let us forget Awco for the moment. A pendulum in a
viscous fluid would follow the remaining equation if at is
taken to mean the angle between the pendulum and a
vertical line. If we assume the viscosity of the fluid to
be so great that we need not consider the inertia of the
pendulum, the angular speed of the pendulum da/dt
is proportional to the force which causes it to move. We
may shape the pendulum so that one unit of force will
produce one unit of speed. Now, if B is the weight of the
pendulum, the force acting to return it to its rest posi-
tion will indeed be -B sin a.
To include the term Awo, we must add a constant

force. We may also bring Acoo over to the left side of the
equation; since da/dt stands for angular speed, -Awo
on the left would mean a constant backward rotation
of the pendulum with respect to the liquid. Constant
forward rotation of the liquid with respect to the pendu-
lum would produce the same force, and we choose this
interpretation for our model shown in Fig. 7.

4w,

Fig. 7-Mechanical model: pendulum in a rotating container
filled with viscous liquid.

The viscous liquid is enclosed in a drum rotating with
an angular speed Awo. Again we assume that the viscos-
ity of the liquid is so great that it will follow the rotation
of the drum completely. Let us also assume that the
rotation of the liquid is not noticeably affected by insert-
ing the pendulum.
Remembering now that the vertical direction repre-

sents the phase of the impressed signal, while the posi-
tion of the pendulum indicates the relative phase of the
oscillator grid voltage, we can go through the whole
range of phenomena by rotating the drum with various
speeds, corresponding to the undisturbed beat frequen-
cies Aw0.
At low drum speed, the pendulum will come to rest

at a definite angle a.,, which will increase as the drum
speed rises. If disturbed, the pendulum will "sink" back;
it will never go past the rest position since inertia effects
are absent.

If we lift the pendulum clockwise to any point below
ai=7r-a,,, it will come back counterclockwise; but if
we lift it past this limit, or over to the right, it will
return clockwise. This is the reason why there are two
different transient solutions for (20a).
At a certain critical drum speed Acomax =B the pendu-

lum will stand horizontal; if the drum is further ac-
celerated, it will "unlock" and begin to go around,
moving fast on the right but very slow on the left and
completing a much smaller number of revolutions than
the liquid.
But as we increase the speed further, the fast whirling

fluid takes the pendulum along, irrespective of the
weight. The motion appears much more uniform, and
the speed of the pendulum becomes nearly equal to that
of the drum: the average beat frequency Ao is approach-
ing the undisturbed value Aoo.
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