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ABSTRACT

A magnetron-specific phase-locking model has been developed using the standard equivalent-circuit approach
which takes into account the unconventional magnetron growth characteristics as well as the frequency pushing
effect. These effects owe their origin to the highly nonlinear electron-wave interaction, thus are believed to be more
pronounced in relativistic magnetrons. The model predicts a wider locking-bandwidth and a shorter locking time
than those in conventional locking theory. The phase-locked amplitude resonance occurs, as the results indicate, at
an injection frequency different from that of the free-running oscillator.

1. INTRODUCTION

The past ten years have seen the rapid progress made in the research on high power microwaves.13 Phase
control of high power oscillators appears to be the logical and the promising means for harnessing and enhancing
the unprecedented power output.46 The relativistic magnetron, with its reentrant nature and high efficiency, is
an especially desirable candidate as the heart of a phase-locked system.79 The successful phase control of an
ensemble of high power oscillators will have important applications in areas like radars, high-gradient acceleration of
particles, and microwave power transmission. Research in this area has been very active1015 and major results were
achieved recently in a short-pulse experiment.'0 Long-pulse operation"'4 20 and the subsequent phase-locking'5
of relativistic magnetrons, provide more interesting application possibilities and involve greater technical challenges
not encountered in the short-pulse experiments.

Conventional magnetrons have been successfully phase-locked for forty years, and the canonical van der Pol
oscillator model16 together with the Adler's locking criterion17 have been adequate in understanding the phase-
locking performance. These models, however, may not be suitable for the phase-locking of relativistic magnetrons for
the following reasons: (1) Frequency pushing effect, namely the variation of frequency of oscillation with electrode
current, was studied theoretically and found to affect the phase-locking behaviour in nonlinear oscillators provided
the magnitude of the frequency pushing is large enough. It is believed that the high current involved in
the relativistic magnetrons will result in a more pronounced frequency pushing effect, although the magnitude
has not been carefully documented experimentally. Recently, frequency tuning with changes in operating fields was
observed in some experiments,20'2' which begin to shed light on the magnitude of the frequency pushing in relativistic
magnetrons. (2) Phase locking of pulsed oscillators —especially those with a cavity fill time comparable with the

pulse length — requires attention to the details of the magnetron growth process.

A good model for the phase-locking of pulsed relativistic magnetrons, therefore, should contain the frequency
pushing effect and the magnetron growth model. The ubiquitous van der Pol equation'6 lacks both; hence will not
serve the purpose of a magnetron model equation. Moreoverr, it is well known that the growth and frequency char-
acteristics (or, equivalently, the dispersion relation) cannot be calculated easily from first principles for magnetrons.
This is prohibited by the highly nonlinear crossed-field interaction in magnetrons and the complex geometry and
particle dynamics involved. It is the purpose of this paper to temporarily dc-emphasize the differences between the
relativistic and the conventional magnetrons (except for noting the difference in magnitude of the frequency pushing
effect), and to apply the conceptually simple approach — modelling the growth and frequency features within the
lumped-circuit model — to obtain fundamental understanding of the phase-locking behavior in magnetrons.

Section 2 justifies the choice of model equations for the electronic conductance and susceptance used in the
equivalent-circuit model using two independent simulation techniques, and discusses the relevant features in the
operation of free-running magnetrons. In section 3, phase locking with weak injection near the oscillator frequency
is analyzed. Important effects due to the magnetron—specific features are identified.
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2. SIGNAL GROWTH AND FREQUENCY-PUSHING IN MAGNETRONS

The distinct features that set magnetrons apart from other oscillators are its the growth and saturation char-
acteristics. This is illustrated qualitatively in Figure 1 , in which the electronic conductance g (the ratio of RF
current and RF voltage) is plotted against the RF voltage.22'23 The conductance curve for magnetrons (Figure la)
assumes a "concave" shape with a second derivative greater than zero. This phenomenon, namely the existence of
finite RF current even with very small RF voltage, has long been observed in magnetron operation.22'23 The state
of zero current is extremely unstable which, with very small perturbation, breaks into a state of large current. This
behavior, which differs drastically from that of most conventional self-excited oscillators (Figure ib) ,leads to some
unique properties in magnetrons to be described in the following.
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Figure1 Electronic conductance g and susceptance b as functions of the rms voltage in the

RF-field for (a) magnetrons, and (b) conventional regenerative oscillators.

To model this magnetron feature, Slater22'23 suggested using

1 VDC
g=-(1;——1) 1

IL VJ'
to relate the conductance to the rms RF-voltage (see Figure la) .This is to be compared with the more conventional
expression for other oscillators (Figure lb)

TI 2
vp.F

g=go(l— , 2)' (2)
VDC

where go is the small-signal gain. It can be shown that Eq. (2), which can often be derived from first principles for
simpler oscillators,leads to the van der Pol oscillator equation. 16

Inaddition to the in-phase component ofthe RF current which governs the temporal growth, ofequal importance
is the contribution from the out-of-phase RF current which determines the output frequency. Frequency-pushing,
namely the frequency change caused by the presence of the electron space charge — the same space charge responsible
for the gain —, is modeled by the following expression22'23

b=bo—g.tancx. (3).

The relationship between the real and imaginary parts of the frequency (susceptance b and conductance g) is evident
from Figure 1. It should not be surprising that the frequency pushing effect, represented by the pushing parameter
& of order unity, plays an important role in magnetron phase locking since the angle characterizes the phase lag
between the electron bunch (spoke in magnetrons) and the resonant wave. In simple devices like reflex klystrons, the
angle a is found to be the deviation of the average transit-time from ir (for 1 -mode) in the repeller region.23
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To justify the choice of the model equation (1), we have24 extended an existing semi-empirical model of con-
ventional magnetrons2529 and applied the model to examine the behavior of the electronic conductance. We
have developed a computer program based on this model and applied it to the 4J50 magnetron (high power X-band,
see Vaughan25 for tube parameters). By changing the loading level at the output, the corresponding operating RF-
amplitudes under steady-state condition were monitored. The result is shown in Figure 2a. We have24 successfully
reproduced the gain characteristics (Figure 2a) described by Eq. (1).

A second approach was taken by Dombrowsky3° using a more elaborate simulation scheme.3' The result of the
simulation for magnetron 2J32 is shown in Figure 2b.

The spoke model24 and the Dombrowski simulation3° thus provide independent means of confirming the l/VRF
dependence of the magnetron growth.
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Figure 2 Calculated magnetron electronic conductance g as a function of (a) The 4J50

magnetron operating at steady-state with three different DC-voltages are calculated

using macro-spoke model (Chen). (b) The 2J32 magnetron starting up from injected

noise is calculated using macro-particle simulation (Dombrowski). Both (a) and (b)

produced the g—dependance described by the model equation (1).

Based on the magnetron-specific models for g and b described in Eqs. (1) and (3), we then proceed to construct
an equivalent-circuit model and study the steady-state and the phase-locking operation in magnetronsand relativistic

magnetrons.

The model is based upon the general oscillator equation derived from the standard parallel RLC circuit22'23 (see
Figure 3). We follow the techniques and notations used in references 22, and 23. The magnetron gainmechanism is

represented by a shunt electronic admittance g + ib. The single-mode oscillator equation for this circuit is

g+ib w wo 1 G+iB
(4)=i(—- )+ +

Cwo WO W Qo Qext

where G + iB is the voltage-dependant nonlinear complex admittance of the load. In the equation, w is the output
frequency, w0 Qo = RCw0, and is the external Q.
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VRFI
-(g+ib) R L G+iB

I____
Figure 3 Equivalent circuit used in modelling magnetron operation. g+ib is the complex admit-

tance describing the electron-wave interaction. G +iB represents the load admittance.

RLC-circuit models the magnetron resonance cavity with loss.

Inserting Eqs. (1) and (3) into Eq. (4), and separating the real and imaginary parts, the steady-state values of
the amplitude Vjj'0 and frequency w' for a free running magnetron are found to be22'23

VDC ____ 1

VRFO :2iö 1 1 1 (5),Wo; +

and
I b0 Bwo WO tanexw Wo+(—)—ç,. (6)

h %'ext

Eq. (6) contains both the frequency pulling (-) as well as the pushing WO&flQ terms. We define a growth parameter

1 1 1

7WO(+ã) (7)

for later convenience.

The amplitude and frequency evolution in the magnetron start-up phase can be calculated under situations
when the frequency is much greater than the growth rate w >> "y, hence the growth process can be approximated
adiabatically by a succession of instantaneous steady-state solutions.22'23 The oscillator equation is then modified by
the addition of a temporal growth rate —ir(t) to the frequency w

g+ib .w—iF wo 1 G+iB
=i( — . )+—+ , (8)

Cw0 0 — r Qo Q€
where

r(t)=f-. (9)

The real part of Eq. (8) again governs the growth

(10)
Cwo QL w0

Inserting Eq. (1) into Eq. (10) and using the definition of r in Eq. (9), one obtains the RF amplitude equation

VRFO
V=—y.(1—---—).Vpj'. (11)

VRF
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The solution of Eq. (11) gives the RF amplitude evolution in magnetrons

V(t) = VRFO (1 — e_ft), (12)

where
vi?7=1—— '.-1 (13)

VRFO

characterizes the initial signal level in the tube. The interesting implication is that the stage of starting from noise
is rapidly passed through, and a linear (not exponential) build-up then brings the system to saturation in a manner
similar to a capacitor charging up. The detail mechanism behind these observations for magnetrons, however, remains
largely unexplored.

Solving the equation obtained by taking the imaginary part of Eq. (8), one finds that the output frequency
evolves according to

w(t) = WI _ taric . y • e-t ' (14)

and approaches the steady-state free running frequency W1 defined in Eq. (6).

3. PHASE LOCKING OF RELATIVISTIC MAGNETRONS

The choice of (9 , b), which contains the interaction physics, determines the oscillator-specific phase-locking
behavior. It is obvious that the deviation ofEq. (1) from (2), and the choice ofnonzero frequency pushing parameter
in our magnetron model, will lead to new effects which are absent in conventional phase locking model based on Eq.
(2) and no frequency pushing. We follow the techniques developed in previous work22'23'32'33 and treat the locking
source as part of the magnetron load which injects counter propagating I and 1/ at a frequency w1 . The driven
oscillator equation becomes

g + ib . W Wo 1 G + iB +
=i(———)+—+ . (15)cw0 wo W Qo Qect

In Eq. (15), the injection parameter p , the injection phase and the relative phase 8 are defined as follows:

(16)

(17)

9(t) = Q5Mag(t)
— (wit + 8). (18)

Separating the real and imaginary parts, we have

= 2pcosO
(19)

cWo QL Qext

_p_ _ 2(W — W) 2psin9
(20)

CWO WO Qezt Qt
In deriving (20) , we have assumed w WO for simplicity.

It is interesting to point out that although the magnetron-specific conductance and susceptance Eqs. (1) and
(3) were repetitively described and emphasized in Slater's work22'23, they were not included in his phase locking
calculations.22 Here we introduce Eqs. (1) and (3) into Eqs. (19) and (20) , and obtain the equations for driven
magnetrons. The equations governing the amplitude and the frequency of the steady-state are
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VRF=VRFO pco5o (21)+

and
w — w' = 2(sin9_ cosO • tana), (22)

Qext

where VRF0 and w' are the free-running amplitude and frequency defined in Eqs. (5) and (6). To simplify the
equations, we normalize all frequencies with respect to WO and introduce the dimensionless injection and detuning
parameters into Eqs. (21) and (22)

W'—Wi
(23)

Qext WO

The resultant equations

VRF Vp(O) = VRFO e ' (24)

and
ldO— --- = ———----- sim(9 — a) + o (25)w0dt Icosal

describe the amplitude and the relative phase evolution. It is important to realize the parameter range in which the
analysis is valid. The assumptions we have made so far can be conveniently collected in terms of a simple inequality
which relates frequency, growth parameter, injection amplitude, pushing parameter, and frequency difference:

1W0>y> /A >IcTI. (26)—
I cosa

The condition under which phase locking occurs is obtained by setting Eq. (25) to zero for steady-state,

! �IoI, (27)
I coscx

which reduces to the familiar Adler's condition'7 , � o when the frequency pushing parameter a is zero. The
widening of the locking frequency range can be quite appreciable depending on the amount of frequency pushing
(see Thble I) . The experimentally observed magnitude of for conventional magnetrons ranges roughly from 0 to
1.5 depending on the operating DC voltage. Under normal operating condition, it is on the low side. An of 0.25
is chosen as the typical value for conventional magnetrons and is used in the following analysis. The high anode
current , typically 1 kA in relativistic magnetron operation , is expected to give rise to even larger a 's (Thble I).

The final relative phase of the locked system is also modified by the nonzero pushing parameter a (Table I)

Ol=sin_1(_tC8)+a. (28)

To summarize the steady-state behavior of the weak injection phase locking system near the fundamental locking
zone, we combine the phase and amplitude equations (24) and (25) by cancelling the 9—dependance. The resultant
equation

—i'V / 0
= (± — (; )2 cosa + -,sina) (29)

contains the dependance of output amplitude Vpj' on three parameters: the injection parameter d= cosa
the pushing parameter a, and the detuning parameter o. The effect of the frequency pushing can be singled out by
comparing the above equation with the case when a =0

(_1)2 o2V2 + -j = 1, a = 0. (30)

SPIE Vol. 1226 Intense Microwave and Particle Beams (1990) / 55

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/02/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



Figure 4 illustrates this comparison by showing the loci of the steady phase-locked states on the O—VRF plane for
1 = 0.1. Different curves correspond to different values of injection amplitudes j&. Figure 4 depicts the dependance
of Vpj' on for the case of (a) no frequency pushing (cv = 0), and (b) finite frequency pushing (c = 0.25). The
free-running state is represented by the point o = 0, VRF/Vgj'o 1. It is clearly seen in Figure 4a, that the loci
of the phase locked states for weak injection form a family of "ellipses" with an eccentricity /i — 72 • The
deviation of the "ellipses" from exact elliptical shape is caused by the unconventional form of the growth model (1);
the results obtained for conventional oscillators based on (2) form evenly spaced ellipses with a common geometric
center. Characterized by an injection parameter , each ellipse in Figure 4 consists of two branches. The result of a
stability analysis established the existence of a stability criteria (cos 0Lk < 0), shown in Figure 4 as the dashed line.
Only the upper branch of the double-valued ellipses constitutes the stable solutions.

(a) (b)
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Figure 4 Amplitude (iJ) versus normalized frequency difference in the phase-locked states

for three injection amplitudes j. = 0.01, 0.02, 0.03. (a) No frequency pushing, each

ellipse corresponds to an injection parameter . (b) The effect of frequency pushing

(a = 0.25) rotates the ellipses and results in a wider locking bandwidth and a shifted

amplitude resonance frequency.

A nonzero deforms the ellipses in a complex way (Figure 4b) . In phase-locked states, the frequency pushing
effectively rotates the ellipses by an angle

01 = tari'('y sincx), (31)

which results in a wider locking bandwidth, as described by (27), than the conventional Adler's condition (see Table
I for numerical examples). The maximum power output, that is, the amplitude resonance, occurs at an injection
frequency detuned from the free-running value

(32)

or equivalently the resonance frequency w is

WrW1+Sflh0 (33)
Q

The amount of detuning, namely the difference of the optimal injection frequency and the free-running frequency,

can become appreciable with large j (Table I).
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TABLE I.

Pushing
Parameter a

Locking
Bandwidtht

Resonant

Frequency Shift*

Locked
Phase

Locking Time
0 � 2°

(RF Cycles)
0 0.1°

0 1 0% —90° 306 477

0.25 1.03 0.5% —61° 244 405

0.50 1.14 1% —33° 171 315
1.00 1.85 1.7% +25° 87 171

1.25 3.17 1.9% +53° 63 111

t in
% of free running frequency, for the case j = 0.02

* for phase locking at the edge of the Adler locking band (a =
** a = O.5p, Oj = 8locked +

The boundary between the stable and the unstable branches, shown in Figure 4 as the dashed line, due to the
non rigid body defromation, is tilted by a different angle

—1 sin2cx — 1 sin2cx2 tan . .d tan . (34)
27

The tilting effectively makes the phase-locked power output asymmetrical with respect to the injection frequency.

Transient behavior is of special interest in the case of phase-locking pulsed oscillators. The transient solution
for the locking process is obtained by integrating Eq. (25) with respect to time. For the locking case (o < z'), the
relative phase evolves according to

1 P1 A1+DeAt8(t)=2tan (35)

where
A = \/fhF2 2 (36)

is the inverse of characteristic time and

D = ° tan°ç' + IL' —A
(37)7tGe +i+A

is the parameter characterizing the amplitude of the transient. It is easily shown that 9(0) = —O, and 8(oo) =
As (35) indicates, phase locking is a continuous process which occurs on a time scale The locking time
is a function of (A,D), which in turn depends on the parameter set (, o, a, es). Using (35)—(37), it can be proved,
and has been demonstrated by numerical examples in Thble I, that the frequency pushing effect (o 0) shortens the
locking time (independent of the sign of c)

For the unlocked case (o > ') , the relative phase evolves according to

8(t) = 2 tan( (jiq + cr) .
tar&2t) , (38)A'q — (crq + ') . tan t
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where
A' = ,i2, (39)

and

q=tan2a. (40)

In the extreme case when the two frequencies are far apart (gil << a) ,simple beating is recovered

0(t) = —8+cr.t. (41)

4. CONCLUSIONS

We have constructed a magnetron-specific equivalent-circuit model for the study of the steady-state and the
phase4ocked operation in magnetron oscillators. The unconventional magnetron growth characteristics lead us to
believe that the state ofpre.-oscillation equilibrium is extremely unstable which, with very small perturbation, breaks
into a state of large RF current. The magnetron growth process rapidly passes through the stage of starting up from
noise, followed by a linear (not exponential) build-up which then brings the system to saturation. More theoretical
effort is needed to explain the phenomena.

Besides the growth characteristics, the frequency pushing manifests itself in many effects in magnetron phase-
locking which may be important for relativistic magnetrons operating with high anode currents. Specifically: the
locking bandwidth is wider than the usual Adler's condition; the resonance of the phase-locked amplitude occurs at
an injection frequency different from the free-running frequency; the time required for locking to occur is shortened
by the frequency pushing effect; and the relative phase of the locked-state is modified by the pushing parameter.

Recently, the importance of the frequency pushing effect on the phase locking of regenerative oscillators has also
been identified theoretically and studied by modeling the nonlinear frequency shift with a Duffing (cubic restoring
force) term in a van der Pol oscillator.18'19 The connection between the two frequency pushing effect models —
namely the van der Pol/Duffing oscillator and the magnetron equivalent circuit model —is currently under study. It
is also possible to construct a magnetron-oscillator differential equation containing both the growth and the frequency
features, which will be applied to the modelling ofgeneral magnetron related phenomena on the oscillation time scale.
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