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Abstract

The main problems considered in this paper are the phase locking of
a magnetron with a small external signal whobe frequency is nearly the natural
frequency of the magnetron, and the locking together of two or more magnetrons.
As a preliminary, we discuss familiar aspects of the operation of a single mag-
netron into a passive load, including the input impedance of a resonant cavity,
the operation of a magnetron into a non-resonant load, the starting of a magne-
tron, and the operation of a magnetron into a frequency-sensitive load, including
a discussion of the stability or instability of modes. Next we come to the main
topic, the operation of a magnetron with an external sinusoidal signal. We find
that the external signal is equivalent to an external admittance whose phase de-
pends on the phase difference between magnetron and signal. The magnetron will
lock to the signal, with such a phase difference that the resulting reactance
of the external signal pulls the magnetron frequency to equal the frequency of
the signal. If the frequency difference between magnetron and signal is great,
and the amplitude of signal small, sufficient frequency pulling cannot occr,
and locking does not take place, but the frequency of the magnetron can be mod-
ified, and harmonics introduced into its out-ut. If the external signal is re-
placed by another magnetron, or other magnetrons, there is a similar behavior,
and with sufficiently large coupling and sufficiently small frequency differences,
coupling will occur, with operation at a weighted mean of the frequencies of the
various magnetrons.



THE PHASING OF MAGNETRONS

The problem of operating a number of magnetrons in phase with each other

is encountered whenever power greater than that produced by a single magnetron is

desired, as in linear accelerators, or in high power radar equipments. This report

presents some of the main theoretical aspects of the problem, as they are en-

countered in the design of the linear accelerator, though it does not treat the

specific application to the accelerator. Further experimental work is under way in

that project, and no doubt further developments of theory will be indicated as the

project progresses. For completeness, this report includes not only information

regarding magnetron phasing, but some discussion of magnetron operation in general,

and operation into a resonant load.

1. Inut Impedance of a Resonant Cavity. A magnetron cavity is a resonant cavity,

provided with an output lead, generally a waveguide. One fundamental property of

the magnetron is the input impedance looking in through that waveguide output, as

a function of frequency, particularly for frequencies near the resonant frequency

of the mode in which it operates. This impedance can be measured by putting a slotted

section and standing-wave detector in the output, feeding in a signal from a signal

generator, and measuring standing-wave ratio and position of standing-wave minimum

as a function of frequency. (See J. 0. Slater, "Microwave Electronics", Rev. Mod.

Phys., 18, 441 (1946), for this and many other points. We shall give references

to this report by the abbreviation ME, followed by chapter and section numbers.

Standing-wave ratios are treated in MB, I, 10.) At a frequency considerably removed

from resonance the standing-wave ratio will be very high (of the order of 40 db), and

the position of standing-wave minimum will vary only slowly with frequency. Inter-

polating between the positions of standing-wave minima on both sides of resonance,

we can get a position which the minimum would have on resonance (we can determine

this directly if the magnetron is tunable, by tuning the resonance away from the

frequency where we wish to operate, determining standing waves there, and then tuning

back so that it resonates at the desired frequency). It is then desirable to use the

plane of standing-wave minimum on resonance as a reference plane for measuring the

magnetron impedance. Of course, there will be an infinite set of such planes, half

a guide wavelength apart; we choose the plane closest to the magnetron, since its

frequency variation will be the least. This plane will henceforth be referred to

as the plane of.the magnetron. A similar plane of reference can be determined for

any resonant cavity, in the neighborhood of one of its resonances.

Across the plane of the cavity, the impedance of the cavity as a function

of frequency may be approximately written in the form
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z l/ezt +z (1.1)

0C 0

Here Z is the ratio of the impedance to the characteristic impedance of the guide
(as all future iapedances and admittances will be, unless otherwise specified).

The quantity Qext' called the external Q, measures the coupling of the cavity to
the output line. The resonance frequency is wo. The quantity is the unloaded
Q of the cavity. Z1 is a very small real quantity, measuring the very small imped-
ance leading to the standing-wave ratio of the order of 40 db off resonance (when
the first term is zero). We shall neglect Z1, though for 3 cm and particularly
for -cm magnetrons, where the losses in the outputs are considerable, it is not

entirely negligible. Expression (1.1) represents a series combination of the small
resistance Z1, with a parallel resonant circuit, in which the first term in the de-
nominator is the capacitive susceptance, proportional to the frequency, the second
is the inductive susceptance, inversely proportional to frequency, and the third
is the resistive conductance, independent of frequency. The fundamental derivation
of (1.1) from electromagnetic theory is taken up in M, III, 5.

By standing-wave measurements we can find the constantsof (1.1), as dis-
cussed in ME, IV, 2. The value of Z on resonance, neglecting Z1, is Qo/Qext; this
equals the standing-wave ratio on resonance. The value of Qext can be found from
the width of the resonance curve, as described in the reference above. The first
step in studying a magnetron is to determine the plane of reference, and these funda-
mental constants of its circuit, by cold test.

If the magnetron is operating, the effect of the electronic discharge will
be like that of a non-linear admittance in shunt with the resonant cavity. That is,
if g+Jb is this admittance (where we shall choose the positive sign to represent the
case where the magnetron is delivering power out of the output), and if is an ef-
fective cpacity of the magnetron cavity, the input impedance looking into the
magnetron is

zP et (1.2)

w( w Q &w

in which we have neglected Z1. The meaning of (1.2) must be clearly understood. In
the earlier case (1.1), since the magnetron was producing no power, we had to feed a
signal from an external signal generator of frequency w into the cavity, and measured
standing-wave ratio and power with that signal, determining impedance from it. In
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(1.2), however; the magnetron itself is generating power. It is assumed that it is

this power that is being used to observe standing waves and impedance. The nega-

tive sign in front of the term in g indicates that the magnetron is a generator

rather than a load.

2. Operation of the Magnetron into a Non-Resonant oad. - Clearly when the magnetron

is operating,the standing-wave ratio which will be present in the output line will

depend on the load. We can exhibit this by writing (1.2) in a different way. Le us

assume that the magnetron is operating into a load of admittance G+JB (as before,

this represents the ratio of admittance to characteristic amittance of the line).

This admittance is to be computed across the reference plane of the magnetron. It

may be introduced by a standing-wave introducer, and in the waveguide between load

and magnetron we assume a standing-wave detector, to measure the impedance or ad-

mittance seen at the reference plane. As in the preceding paragraph, we assume that

it is the magnetron's power itself which is used to measure standing waves. Now the

quantity Z in (1.2) measures the impedance looking into the magnetron. The impedance

looking out of the magnetron, or into the load, across the same plane, will be -Z,

and its reciprocal, the sdmittance, will be -1/1 = G-JB. Rewriting (1.2), then, we

hav
jb w Wo + JB (2.1)

OwC~b r (" O + - +

Oo0 e 0 o ext

This is the fundamental equation of magnetron operation, and is discussed in ME, IV,

4 and 5.

To interpret (2.1) we must think more about the chsracteristics of th3

electronic discharge. For a given value of d-c current and magnetic field in tha

magnetron, there will be a functional relation between the r-f voltage on the el-

ements of the magnetron, and the -f current which flows. This relation is dis-

cussed in ME V, 6 and 7. The r-f current of course has two components, one in phase

with the voltage, one out of phase. Experimint shows that the component in phase

with the voltage decreases with increasing voltage, in a roughly linear manner, the

current being finite for very small voltages, but decreasing to zero at a finite

voltage. That is, approximately we may write

irf (in phase) (2.2)
R

where E, R are constants (see ME IV, 4 for this equation). If this equation is

taken as correct, g, which is by definition the ratio of the component of current in

phase with the voltage, to the voltage, is

g = (R) - (l/R) ()
V 
rf

-3-



a hyperbola, becoming infinite for zero r-f voltage, decreasing to zero when Vrf = X,

a finite value. Whether this precise functional relation is assumed or not, the

essential point is that g is a definite function of Vrf which can be found by ex-

periment. Furthermore, the power is determined in terms of r-f voltage from these

relations; since the power is 1/2 the product of peak voltage and peak component of

current in phase with voltage, we have

? (EV -V f2 (2i4)
= 21R (Vrf rf 2.)

a parabola with maximum at Vrf = E/2, or half the voltage at which g goes to zero.

In the more general case in which g is not given by (2.3), we may still assume this

same general sort of relationship, with a maximum power for some value of Vrf.

The component of current out of phase with the voltage is likewise a

function of Vrf, as is its ratio to the voltage, which is b. We shall be partic-

ularly interested, not in b as a function of voltage directly, but in b as a func-

tion of g; for if g is known, Vrf can be found from it, and hence b. We find that

this relation is approximately linear, with a negative slope: approximately

b b - g tan a, (2.5)

where bo, a are constants. The quantity b is difficult to find from experiment, and

its value is not well known, but it does not affect our results seriously. The con-

stant a is generally of the order of magnitude of 1/4.

With this understanding of the nature of g and b, we may now return to

(2.1). Taking real and imaginary parts of this equation, we have

_ (2.6)
Owo 0o Qext

b + W B 2(w-wo) B (27)

w l r a w t w )xt

where the latter form arises by writing w/wo - w, = (w2-wo2)/uww (u-)(Wto)/
and setting w = w except in the difference term w-w Now with a given load, the

right side of (2.6) is determined. Hence g is determined, and from this the voltage

Vrf and the power are known. Knowing the r-f voltage, we know b. Then, knowing B

from the load, (2.7) determines the frequency of operation.

These relations can be interpreted in a graphical way. We set up an ad-

mittance space, in which G is plotted as abscissa, B as ordinate. Then first we plot

a line representing the electronic behavior, in which we plot gqext/Oo - Qext/Qo

as abscissa, bQext/Owo as ordinate. By (2.5), this is approximately a straight line

with a negative slope, making an angle of -a with the axis of abscissas. Next we plot
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a line whose abscissa is G, and whose ordinate is B + 2ext (w-w)/w0, the frequency

w being a parameter which varies from point to point of this line. Assuming as we

are doing at the moment that G and B are independent of frequency, this is a ver-

tical straight line. The intersection of our two lines then, by (2.6) and (2.7),

determines the operation, its abscissa determining g and hence the r-f voltage and

power, and the ordinate determining frequency.

We can see from (3.7) that the frequency is affected by two things besides

the resonant frequency of theccavity. First, if b changes, but B stays. the same, the

frequency will change. This is the phenomenon of frequency pushing. As the d-c

conditions of operation change, the values of g and b as functions of r-f voltage

change. It is found that the effect on the relation (2.5) between b and g is a

change in bo, or a vertical displacement of the curve, without much change in a.

Thus by (2.7) there is an effect on frequency. The other effect is that of a change

in B, the reactance of the load. This effect on the frequency is called frequency

pulling, and from (2.7) we see that the amount of frequency pulling is inversely pro-

portional to Qext' In fact, the pulling figure of a magnetron is defined as the ex-

treme change of frequency when the reflection coefficient of the load goes around a

a circle corresponding to a standing wave of 1.5. In our G-B space, this corresponds

to a circle extending from G = 2/3 to G = 3/2, and having thus a diameter of

3/2 - 2/3 = 5/6. The extreme variation of frequency produced by any admittance on

this circle then corresponds to the amount of vertical displacement possible without

losing an intersection between the circle and the line representing the relation be-

tween g and b. As in Figure 1,

B

Figure 1

-5-



wo see that this vertical displacement is related to the diameter of the circle by

the relation, vertical displacement = (5/6)/sin a. Thus from (2.7), where we find

that the vertical displacement equals twice the change in frequency divided by the

average resonance frequency, we have

5 W0
Pulling figure = 12 sin ex (2.8)

In the experimental study of magnetron operation, we adjust the output load,

or G+JB, and measure the output power and the frequency of operation. We can then

plot contours of constant power, and of constant frequency, on the G-B plane. From

what we have ust seen, the contours of constant power should be vertical lines cor-

responding to G = constant, and the contours of constant frequency should be a set of

lines sloping downward 'with angle a to the axis o abscissas, the contour for w = w

being, from (2.5) and (2.7),

B Lbo fext et tan a G tan a (2.9)

and the contours for other frequencies being displaced upward by an amount 2Qext (W-Wo)/w.

It is usually found experimentally that this vertical spacing of the frequency contours

is in good agreement with the value as predicted from the ext as determined by cold

test; and that the power contours actually are vertical lines provided G is neither

excessively large or excessively small; in these limits, other complicating features

come in, which we shall Lot bother with at present.

We Lave spoken as if the values of g and b were known to start with. This of

course i not the case. It is rather through observation of the operating characteris-

tics that these quantities are known. Thus an observation of frequency contours clearly

gives g as a function of b, using (2.6) and (2.7), and it is from such experiments that

we deduce the linear form t2.9) which appromimate!y represents observation. Similarly

we can get the relation between g and Vf from the power observation. The power P is

g Vrf 2 If we observe the power, and find g/Owo from (2.6), from the measured G and

thp values of 4o and Qext found from cold test, and if we can estimate C (which we can

do by study of the internal circuit of the magnetron, in a way suggested in ME II,6),

then we can get g. Hence from the power we find Vrf. It is in this way that the

approximate equations (2.2) an (2.3) have been set up, to describe the results of

such experiments.

In determining the power, one caution is necessary. ot all the power pro-

duced by the oscillator finds its way to the load; some of it is absorbed in losses

iiside the magnetron. To find the fraction of power produced which is delivered to the

load, which is called the circuit efficiency, we use Eq. (2.1). We note that it is like

a shunt combination of capacity, inductance, loss conductance proportional to l/Qo , and

load conductance proportional to G/Qext, as well as load susceptance. Since in a
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parallel circuit there is the same voltage across all elements of the circuit, the

power dissipated in the magnetron loss will be to the power dissipated in the load

as 1/Qo is to G/Qec t . Thus we shall have

0 = G + 7-3 (2.10)

We must in every case divide the observed power by the circuit efficiency, in order to

determine the power produced by the magnetron, which we must use in finding the re-

lation between g and Vrf.

We have plotted the results of observation in a G-B plane, and this plot

is the most useful for theoretical interpretation. Howevez, in practice, it is

common to plot in a Smith chart, for convenience in making transformations from one

point of the line to another. Such a plot is generally called a Rieks diagram, though

Rieke himself has used the plot in the G-B plane more than in the Smith chart. We shall

not go further with the appearance of the Rieke diagram, but shall assume in all cases

that the results of observation are to be interpreted in a G-B plane. In doing this,

it is essential that the plane of reference be that described at the beginning of this

section. The nature of the Rieke diagram in the Smith chart is iscussed in ME IV,5,

the Smith chart or reflection coefficient plane being take up in ME, I.

3. The Starting of a Manetron. - In the preceding section we have considered the steady

state operation of a magnetron. In starting, the situation is quite different. The

problem is discussed in E IV, 6, and we reproduce the discussion given there with littl.

change. For a short time interval during the build-up, we may assume that the amplitude

is increasing exponentially with the time, so that formally we may treat the frequency

as being complex, the imaginary term representing the exponential increase. Thus if

= w + w2, the time variation of voltage will be according to e4
w2t e l t, so that

-w2 = a in Vrf/dt, where Vrf is the voltage amplitude. Substituting a complex frequency
in (2.1), we have instead of (2.6),

-, = +G -2 + G + 2 l (3.1)
O = Q- +ext Ww dt In Vrf w

o 0 ext 0 o ext 0

Eq. (2.7) remains unchangecd. Thus we have a differential equation for the time varia-

tion of Vrf, if we know g as a function of Vrf , as for example from (2.3). If we assume

that value, the differential equation can be integrated, giving

Vrf = R 1 - e ow + (P.)rf RW T/ROw +1 3
where

1 1 G

o qext
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In other words, from (3.2), we see that the voltage in the magnetron builds up ex-!

ponentially, the time constant being determined from the loaded Q, Q, with an addi-

tional loading term 1/RCw . Since the loaded Q is ordinarily small (say 100 for a

10-cm magnetron), this indicates that it does not take many cycles for the magnetron

to build up the voltage in the cavity, and get into full operation. In our plot in

the G-B plane, we note that during the build-up we are on the b-g curve, but not at

the point corresponding to the G and B of the load. Instead, we start with low

voltage, or large values of g, or far to the right in this plot, and gradually move

to the left along the g-b curve, until we come to the point corresponding to stable

operation.

4. Operation of a Ma etron into a Freaency-Sensiti e Load. - We have been consider-

ing the operation of a magnetron into a load which was independent of frequency. On

the other hand, in many cases we wish to operate into a circuit, such for example

as a resonant cavity, which has an admittance depending on frequency. In this case

the quantity on the right side of Eq. (2.1) becomes a more complicated function of

frequency than we have so far considered. We can still handle the problem, however,

by the same fundamental principles we have been using, and at the same time can throw

more light on the nature of those principles.

Let us rewrite (2.1) in the form

ext (W-- yoxt(g+jb)-*) 2j-e y;(( } xt + o(w) + JB(w). (4.1)

The function y(w) is a complex function of the variable w. In steady state operation

we are concerned only with real values of the frequency, but in the preceding section

we see that we need to consider complex frequencies as well. We may then consider the

mapping of the w plane onto the y plane, as in studying functions of a complex variable.

We may draw the contours corresponding to w1 = constant, w2 = constant, in the y plane.

Since y is an analytic function of w, the transformation will be conformal, and squares

in the w plane will transform into approximate squares in the y plane. Thus we may

have a set of contours as in Figure 2. We have drawn lines to correspond to equally

spaced values of the real and imaginary parts of the frequency, and have arranged to

have the real part of frequency increasing in general upward, and the imaginary part

increasing in general to the left, which is the usual situation. We may now draw on

the same plot the g-b line, plotting bQext/Owo as a function of gext/Wo. Then the

magnetron will start to build up its oscillation at a low value of r-f voltage, or a

large value of g. Here it will find a large negative value of w2 , or will have a high

rate of build-up. Its voltage will increase, its g will decrease, or the point represent-

ing it will move to the left along the g-b curve, as shown by the arrow in the figure.

At the point P where the g-b curve intersects the curve w2 = O it will come to equilib-

rium, oscillating with the frequency given by the value of w1 appropriate to this point.
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CURVE

Figure 2

The equilibrium in the case shown above is a stable equilibrium: an in-

crease of g, or decrease of voltage, brings us to a region of negative 29 or of

increasing voltage, while an increase of voltage carries us to a positive w2, or

decreasing voltage. Clearly we can also have states of unstable equilibrium, in

which a small change of voltage in either direction leads to a further change of

voltage. In the next figure (Fig. 3) we show the curve of w2 = 0 for a case in which

the g-b curve intersects in three places rther than one. In the intersections marked

P1 ' P3, we have stability, while in P2 we have instability: a displacement from P2

in the direction of P1 will result in a transfer to P1, while at displacement toward P3

will end up at P3.

Figure 3

In a case as shown above, it is true that both P1 and P represent stable

operating points. However, if the oscillator were started in the circumstances shown,

it is clear from our preceding discussion that the point representing the oscillation

will start at the right on the g-b curve, and will move to the left as the voltage
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builds up. Since it will meet point P3 first, this will be the state of oscillation

which will actually be set up. However, suppose that we have some control over the

circuit, say by a tuning knob, so that we can shift the curve corresponding to w2 = 0

bodily upward, or otherwise distort it. (This can always be accomplished, in a tunable

magnetron, by tuning it, for this changes w0 in (4.1), and as we can see that shifts

the whole function y upwards). Then we can cause points P2 and P3 to approach each

other, and can remove the intersection with the g-b curve represented by these points.

When this happens, the magnetron would find itself no longer in a stexdly state, and its

w2 would again be less thtn zero, so that the voltage would proceed to build up more.

The point would move further to the left on the g-b curve, and would end up at a point

near.Pl. If the magnetron were in continuous operation, we could then tune it back,

and would proceed to an equilibrium manner to point PI1 This could naturally not be done

in a pulsed magnetron, since each pulse represents a new start, and the pulses are so

fast that it is not practicable to tune the load during a pulse.

5. Operation of a Maenetron with an External Sinusoidal Signal. - Until now, we have

considered the operation of a magnetron into a passive load. Now we come to the first

case of the phasing of magnetrons. The essential requirement for phasing of an oscilla-

tor is a load whose admittance depends on the oscillator's phase. Such a load is pro-

vided if there is an external signal being fed into the oscillator through the output.

Let us see how this comes about.

Suppose the current and voltage being delivered by the magnetron, at its

plane of reference, are i ejwt and V eJwt, and let there be an additional signal of

frequency wl1 fed in from outside, so that its current and voltage at the magnetron's

plane of reference are i1eJwlt and VleJlt. We note that if, for instance, i 1 is in

phase with i, V1 will be out of phase with V, in order that the direction of power flow

in the magnetron power and the external signal may be opposite to each other. NoW let

us superpose these two fields, and divide current by voltage, to find the admittance.

This will be

eJwt + iletWlt + (il/i)ei(w w)

other words, there is a time-dependent term v arying with frequency in the ad-

In other words, there is a time-dependent term varying with frequency wl-w in the ad-

mittance. If il/i and V1/V are small, we may write this admittance as

G + JB + a eJ(Wlu5)t, (5.2)

where

G + j3 = i/v, a = (G+J3)(-i V(5.).

Thus the ratio of a, the amplitude of the time-dependent term, to the constant ad-

mittance, depends on the ratio of current or voltage in the incoming signal to that
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sent out by the magnetron. We recall, as was mentioned earlier, that the two terms

i1/i and -V1/V will have the same sign. Even if a is not small, we still note from

(5.1) that the admittance is a bilinear function of the complex quantity a( 1w )t.

As this quantity goes around a circle in the complex plane, which it does as time

increases, the corresponding point in the admittnmce plane must then also go aro' A

a circle. It will obviously rotate periodically, with the sane period wl-w as before,

but it will no longer rotate uniformly, so that it can be described by a Fourier series.

The expression corresponding to (5.2), then, for large amplitudes, will contain har-

mofnics of l1-w, as well as the fundamental. For our purposes we may neglect these

harmonics, and assume an expression of the form (5.2) in all cases.

Under the action of this time-dependent admittance of the load, there will

be a frequency-pulling phenomenon in the magnetron. This phenomenon has been de-

scribed,in very general terms, by HEutoon and Weiss (Synchronization of Oscillators,

Technical Report of National Bureau of Standards, Division XIII, Ordnance Development

Division, Section 6-Electronics, Radiation Group, July 24, 1946). Since we shall be

concerned with the phase of the oscillator, as well as its frequency, let us assume

that its phase is 0, so that its frequency of operation w equals , and we may replace

wt by . Then the admittance (5.2) becomes G + JB + a e(Wl t1 . In this form it is

obvious that the admittance depends on the phase of the magnetron, and it is natural

that a very tight locking of the phase is possible.

Before proceeding with the mathematical discussion, we can give a qualita-

tive discussion of the process of phasing which proves on analysis to be correct. We

start from our fundamental equation (2.1), but modified to include the phase-dependent

load which we are now considering. That is, we have

b = Wo 1 G + B +a e (54)

t o ~o Qext

Th? time-dependent term in (5.4) may be separated, in the usual way, into real and

imaginary parts, each of which depends on the phase difference between magnetron and

external signal. If we let this phase difference be 8. defined by

e = 0 - wlt, (5.5)

and if for convenience we asewne that a is real, these real and imaginary parts of

(5.4) are

-1 + + acosO (5.6)

CW V. Qext ext

b -2(-wo) a sin (5.7)

o o qext qext
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We now consider (5.7). After solving for frequency w, it indicates a fre-

quency dffering from the value we should have without the incoming signal, by the

amount 2 o a sin 0, provided e can be treated as a constant. But by (5.5), e can

be constat only if = 1, or if w = 1 . That is, this can be true only if the

magnetron is locking to the external signal. In this case, we may solve (5.7) for

sin , finding

a sin - 2(w1 o) B b 2( 1 ) (5.8)

.ext, o + ext o (5.8)

where w is the frequency with which the magnetron would operate with the existing B

(frequency pulling) and b (frequency pushing) in the absence of the external signal.

Equation (5.8) suggests that there will be a solution in which the magnetron locks to

the signal, with a definite phase difference e, which reduces to zero when the external

signal has exactly the frequency with which the magnetron would operate without the

signal. The maximum value which sin e can have is of course ±1; and this fixes extreme

limits for wl. , the frequency difference between the signal and the natural frequen-

cy of magnetron operation, beyond which locking is impossible. For a constant value of

0, (5.6) then indicates that the external signal will have the effect of adding a re-

sistive as well as a reactive term to the load, and this, by the principles discussed

in earlier sections, will result in a modified r-f voltage and power. With only sin 

known from (5.7) or (5.8), the sign of cos is ambiguous, but we shall show later

that the sign is such that when the magnetron is locked to the signal, a cos is

negative, so that the signal acts like a negative conductance, or the negative sign

represents a power-flow from the signal into the magnetron. This term is maximum when

W1 =w W, and reduces to zero when W1 - W is at its extreme limit.

The condition of locking in,which we have described,is a steady state, but it

is obviously not the general solution of the problem. In the next section we shall set

up a differential equation, following Huntoon and Weiss, which represents the process

of approach to this steady state. We shall find that if the external signal is suddenly

impressed, the phase will rapidly adjust itself to the proper value (5.8), with a time

constant substantially the same as that by which the r-f voltage adjusts to its final

value, as discussed in Sec. 3. On the other hand, if the signal frequency Is too far

from the magnetron frequency for locking to occur, we shall show that the signal per-

turbs the magnetron operation, in that it tends to pull the magnetron frequency toward

the signal frequency, and at the same time introduces harmonics into the magnetron

operation, both phenomena becoming large as the signal approaches the limiting frequency

at which it can produce locking.

6. Analysis of the Process of ocdkin. - To set up a differential equation describing

the process of locking, let us tart with (5.7), introducing the frequency w as in

(5.8), and let us replace w, which equals , by + 1 , from (5.5). Then we have
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de awo sin e + (w - 1 ). (6.1)
dt 2Qex t

This differential equation may be solved at once, by multiplying by dt, dividing by

the right-hand side, integrating, and solving the resulting equation. The answer

is

tan2 0 - )2 .A(t to) (6.2)
2(1 )Qext ( 1 - )qext 1 e

where

A ( (w1 -w').

Here to is the constant of integration. This differential equation (6.1), and its

solution are discussed by Huntoon and Weiss and its application to the phasing of

triode circuits was discussed by Adler, Proc. I.R.E., 34, 351 (1946).

There are two cases of this solution, depending on whether the magnitude

of Wl-w is greater than or less than am /2Q t. From our previous discussion, par-

ticularly of Eq. (5.8), we see that the case where w1l-w is less than this quantity

is the case where the magnetron locks to the signal, and the case where it is greater

is that when the magnetron does not lock in. Let us first consider the case of locking.

For the case of locking in, A is real. Then as time goes on, the exponential

in (6.2) becomes infinite, end tan /2 approaches a limiting value determined from (6.2).

By a little trigonometric manipulation, we can show that the corresponding value of

e is

0 = . - sin 1 ex (6.3)am

where in (6.3) we are to use that particular value of the inverse sine which goes to

zero when its argument goes to zero. Thus in this limit sin approaches the value

2(wulw')Qxt/aWo, the value derived in (5.8) for the limiting value. In other words,

since e approaches a constant value, the magnetron locks in, as described earlier. Now,

however, we have determined the time constant A with which this looking in is accomplished.

At the same time we find from (6.3) that the value of which corresponds to locking in

is that which approaches the magnetron frequency w', so that the term a cos in (5.6)
approaches a negative value, indicating power flowing from the signal into the magnetron,

as we have previously mentioned.

If the external signal is suddenly applied, as we have seen, the phase of the

magnetron will gradually pull in to its limiting value, and it is easy to see from (6.2)

that e will never vary by more than YT in the process. In other words, the locking in

in frequency occurs immediately, but the phase gradually adJusts itself. At the same
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time, of course, according to (5.6), the r-f voltage and power output must adjust them-

selves. We may compare the time constant by which this power adjustment will occur

with that for phase, by comparing Eqs. (5.6) and (3.1). At the instant when the ex-

ternal signal is applied, g will find itself out of adjustment for the new load.

Taking for simplicity the case'where cos e = -1, we see that -a/Qext is to be identi-

fied with (2/wo)d in Vrf/dt. That is, the time constant for approach of r-f voltage

to equilibrium in this case is a /2Q t, which by (6.2) is the same as the value of

the time constant A for approach of phase to equilibrium. We note from (6.2) that as

Wl-W approaches amo/2Q xt, or as we approach the edge of the frequency band over which

lock-in is possible, the time constant for locking in of phase becomes larger, or A

becomes smaller. Similarly as cos e becomes less than unity, the time constant for ad-

Justment of voltage becomes larger.

Next we consider the second case, that where -WI is greater than ao/2ext,

so that locking in never occurs. In that case A becomes imaginary, and (6.2) can be

written in the form

2
tan a + 1 _ cot A(t-to) (6.4)

where A = AF. For large values of wl-l', this approaches tan /2 cot A'(t-to)/2,

so that 9 = - A(t-to) = - (Wl-')(t-t ). Then from(5.6)we have = , that the

frequency of the magnetron is unaffected by the external signal. For smaller values of

Wl-w', however, the situation will be different. When A'(t-to) increases by 2, 0 will

still decrease by 2, so that we shall still have the average time rate of change of

O equal to -A , but will no longer be a linear function of time. It will instead be

a linear function, with a periodic function of period 2/A superposed on it. Thus

in the first place, considering the value of Al, we shall have

(W 2W ( I 2 (6ex5)

as the average frequency of the magnetron. This is a value which equals the frequency

of the external signal at the edge of the lock-in band, but which gradually reduces to

the unperturbed frequency w' of the magnetron as the signal is tuned far from the

magnetron's frequency. At the same time, on account of the periodic variation of 9

with time, we shall have essentially a frequency modulation in the magnetron's output,

with side bands whose frequencies are integral multiples of A'/2 n. This quantity is the

frequency difference between the magnetron and the external signal.

We may expect, then, the following situation as a magnetron is operated con-

tinuously, and a continuous external signal is tuned closer and closer to the magnetronts

frequency. As the external signal approaches the frequency for which lock-in is possible

(a frequency which is further from the magnetron's normal frequency, the greater the am-

plitude of the signal, or the greater the frequency pulling of the magnetron), the mag-

netron's frequency will pull toward that of the external signal, and at the same time
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side bands will build up, separated from the magnetron frequency by integral multi-

ples of the frequency separation between the magnetron and signal frequencies. These

side bands will increase in intensity as the external signal comes closer to looking

the magnetron. Finally lock-in will occur, the side-bands will disappear, and the

magnetron will operate in i.e same frequency as the external signal. As the signal

is tuned to the natural operating frequency of the magnetron, the magnetron will fol-

low its frequency, but will be changing its phase with respect to the external signal.

As the external signal is tuned away from the magnetron resonance on the other side, the

same events will be observed in reverse sequence.

The writer has not carried out such experiments with c-w magnetrons, but has

performed an experiment with two reflex klystrons coupled to each other through an

attenuator, the spectra of the two being observed by a probe in the line oining the

two klystrons. As one of the klystrons was tuned toward the other, phenomena ust

like those of the preceding paragraph were observed, the two frequencies of the os-

cillators as observed on a spectrum analyzer pulling together, very conspicuous har-

monics building up. and finally the two oscillators locking together, and tuning to-

gether with the tuning adjustment of either oscillator. The theory of this section was

not available at the time these observations were made, so that no test was made of

the numerical aspects of the theory. However, one observation was made which bears

out the correctness of the theory. We should expect that if the frequency difference

between the incoming signal and the oscillator remained fixed, and if the strength of

the incoming signal was increased by decreasing the attenuation between the two

oscillators, we should approach the condition of lock-in, ust as if we brought the

two frequencies together. This was observed in a very conspicuous manner. With

the two oscillators tuned some distance apart, and a considerable attenuation be-

tween them, the attenuation was then decreased. The harmonics appeared, the fun-

damental frequencies of the two oscillators pulled together and they finally locked.

The phenomena we have been describing in the preceding paragraphs refer

to continubus operation of magnetrons or other oscillators. .With pulsed operation

we naturally expect the situation to be somewhat different. As the magnetron is

started, if the external signal is already present, we may expect the oscillation

to build up in voltage, and to stabilize in phase, much as in the preceding discussion.

We must remember, however, that the spectrum as observed will be complicated by the

finite length of the pulse. The build-up time as derived from our discussion is

generally considerably shorter than the ordinary pulse length, so that the breadth

of the band in the spectrum representing the line will be smaller than the frequency

difference between external signal and magnetron. This would not always be the case,

however, and a more complete discussion than given here would be necessary to describe

the appearance of the spectrum in all cases.

7. Operation of Two Magnetrons into a Single Load. - In our discussion of the pre-

ceding section, we have assumed the external signal to be unaffected by the behavior
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of the magnetron which it was phasing. This of course would generally not be the

case. If the external signal were produced by another oscillator of roughly the same

power output as the magnetron,acting through an attenuator to reduce its strength at

the magnetron, then the magnetron under discussion can equally well send power through

the attenuator to the oscillator producing the signal, and can react on that. We must

expect then that in general each of two or of several oscillators coupled together will

affect the others, in a symmetrical manner. We shall find,' however, that this does

not affect the results in an important way.

As a first indication of this, let us consider the two oscillators, coupled

together. Let the phase of one be 1. and of the other 02. The admittance of each

will then contain a term depending on the phase difference O2-~1. Proceeding as in

(5.4), (5.8), and (6.1), we have

At (1 = + s in 2)
2ext, (0102)

4. -e 2 · 2 sin (W2-1). (7.1)
dt 2 (ext,202-01)' 

These must be solved simultaneously. Subtracting the first from the second, we have

an equation for 02-01:

d(P2~ >(L'~l )[ "'_ + h (7.2)d , 2t)---1 n (0 2- 1 ) + ('-l') (7. )
dteXt,2 2ext,lI

This is an equation of the same form as (6.1), so the same discussion applies here as

there. If the resonant frequencies Wll and w21 of the two magnetrons are not too far

apart, they will lock in, the phase difference between them settling down to a con-

stant value. Then (7.1) will give the asymptotic values of 1 and 2, the frequencies

of the two magnetrons, which must equal each other for lock-in. These equations, or the

limiting form of (7.2), will also give the final value of phase difference. rom (7.1),

we see that this will be such that its effect on each magnetron will be to introduce a

reactive load sufficient to pull its frequency to the operating frequency, which will

not equal the frequency of either magnetron. Rather, if the two magnetrons have iden-

tical properties (al - a2 , extl ext 2)' but are tuned to slightly different fre-

quencies, the operating frequency, from (.1), will be the average of the two frequencies,

so that if either one is tuned, the operating frequency will tune by one-half the amount

by which this one is tuned.

This last result suggests a different approach to the problem of coupled

magnetrons, which is legitimate and simple. Suppose we have two magnetrons coupled

through a matched T to a load in the following manner. With a suitably matched T,

we can find reference planes in each of the three branches, such that the sum of the

admittances looking out from the T into each of the three outputs equals zero; that

is, the admittance looking into any output equals the sum of the admittances looking
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out the other two, or the admittances appear to be in shunt. Now let magnetrons be

attached to two of these outputs, with such line lengths that the magnetron planes of

reference are at the reference planes of the two branches, and let a load be inserted

in the third branch, its value being measured across the plane of reference in that

branch. Then by using (1.2) for the impedance looking into a magnetron, and its recip-

rocal for the admittance, and letting the load admittance be G + JB, the relation for

the shunt T is

+ ext,2 tJ - g )+ +b0 (72 3)

Here the external Q, unloaded 0, etc., of the two magnetrons are denoted by subscripts

1 and 2, respectively. We thus see that the magnetron circuits, and the electronic con-

ductances, of the two magnetrons are effectively in shunt with each other under these

circumstances. We can then proceed as in Sec.2 to find the frequency of operation, and

r-f voltage. Suppose B, bl, b2 are zero, or that they are taken care of by replacing

w1' 2 by 01', W2 , as before. Then taking the imaginary part of (7.3), we have

0 = Qextl(41 l ) + %xt,2(w-w21) (7.4)

We note that this equation is satisfied by the values from the two simultaneous equa-

tions (7.1), provided we set w = 1 = 2 in that equation, as we have if the magne-

trons are locked in, and if we assume a1 = a2, and that the frequency difference between

01 and w2' is small. Thus this simple concept of the magnetrons' being in shunt leads

to the same result for the final frequency of operation as our previous method, based

on the differential equation (7.2). This final frequency, found by solving (7.4),

is

WW %xt.1 Pert I+ 02 .2 S7.5)
O-ext,l + ext,2

a weighted mean of the frequencies of the two magnetrons, weighted in proportion to

their external ' s; that is, a magnetron with high external Q, or low pulling figure,

tends to fix the final frequency more than one with low external , or high pulling figare.

We can look at Eq. (7,3) in another way. Let the admittance

0. 11_2~uZ~md.)+ 11% -(g 2 +jb2 /Cz w 2f

which we see looking into the second magnetron across its plane of reference be called

G2+JB2, where of course for the operating magnetron G2 will be negative. Then we can
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write (7.3) in the form

gi+jb1 / w1 (G+jB + 2 + B ) 1
- ~ ~ 1)+ + e,,+ (7.6)

1 1

If the phase of magnetron 1 is 1, that of magnetron 2, 2' then the admittance G2+JB2
as interpreted by the first magnetron will contain a phase factor e 2 1 , as before,
so that (7.6) is equivalent to (5.4). Furthermore, we can find the value of a by con-
sidering the properties of magnetron 2. or instance, suppose each magnetron is designed

to operate into a matched load. Then each of the terms on the right side of (7.3) will

equal -1, when the load is correctly chosen. To have the two magnetrons operating into

proper loads when connected by the T, we must clearly have the load (G+JB) of (7.3)
equal to 2, or have twice the admittance of a matched load. If then the magnetrons
are operating in this manne:, the quantity G2+jB2 as seen looking into magnetron 2 will
be -1, so that by comparing (7.6) and (5.4) we see that in this case a 1 (or -1, which
amounts to the same thing, since we have a phase at our disposal in the angle i). This

allows us to use our analysis of Sections 5 and 6, and to conclude that the maximum
frequency difference with which locking is possible, with this arrangement of magnetrons

and load, is w1/2Qext + w2/2Qext,2 This means, ps far as order of magnitude is
concerned, that if the resonance curves of the two magnetrons, as etermined by their

loaded Qs, overlap in frequency, they will lock in with each other. This of course

is a tighter locking then we often find, since if there is a decoupling between the

magnetrons, by an attenuator or other means, which we do not have with this case of
the matched T coupling, the constants a and a2 of (7.2) may be much less than unity,
and the corresponding limit of locking-in may be much smaller.

8. Operation of Ma-etrons into a Sinle Load. We can now generalize the results of

the preceding section to the operation of N magnetrons into a single load. Let us suppose

we can set up a circuit, possessing the same properties as the matched T in our pre-

ceding case; that is, a cavity possessing N+l outputs, such that the sum of the admit-
tances locking out the N+l outputs equals zero. We then have an equation similar to

(7.3), if magnetrons are attached to N of the outputs, eand an admittance G+JB to the
other, except that there are N terms on the right side of the equation. If each mag-
netron is designed to operate into a matched load, we then wish to make G = N for best
operation. Since it is difficult to make a load with this large admittance, it is more
convenient in practice to have N outputs for magnetrons, and N for loads, all effec-

tively in shunt with each other, and to put matched loads at each of the load outputs.
A practical method of realizing such a circuit has been described by Bostick, Everhart,
and Labitt, Technical Report No. 14 of Research Laboratory of Electronics,September 17,1946.

Setting up our circuit as we have ust described, we may then write an equation

like (7.6) but differing from it in that there will be magnetron admittances from 2 to
N on the right-hand side. We really should handle this problem by simultaneous equa-

tions, as in (7.1), but we shall not do that at this time. We may, however, get a
good idea of the physical situation by assuming that N-1 of the magnetrons are already
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locked in phase, and asking what the remaining one will do. Then in (7.6) all the

terms from G2+JB2 to GN+JBN will have the same phase, say 02. Thus we shall have an

equation like (5.4) only now the quantity corresponding to & will be equal to (N-i).

This very large value will result in an exceedingly strong tendency for the remaining

oscillator to lock in with the others. In other words, the more magnetrons there are,

the more strongly they will lock in. Of course, the situation when they start, all

out of phase with each other, will be complicated. Nevertheless, from the nature of

the equations governing them, it is to be assumed that the phases will very soon bring

order out of chaos. Each magnetron will try to lock in to the mean phase of all the

others, this will tend to build up the strength of this mean, and it can be assumed

that in a very short time, a common phase will be established, to which any magnetron

which wanders away can be stabilized. The frequency of Joint operation will be deter-

mined by an extension of Eq. (7.5), a weighted mean of the frequencies of all the mag-

netrons, weighted by their external Q's. In this synchronized operation, it will of

course follow that all the loads, assuming they are matched, will operate in phase with

each other, since they are effectively in shunt with each other. Thus these matched

loads might well be the inputs to a set of radar antennas, which then will all operate

in phase, forming an antenna array.
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