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The main problems considered in this paper are the phase locking of
a magnetron with a small external signal whose frequency is nearly the natural
frequency of the magnetron, snd the locking together of two or more magnetrons.
As a preliminary, we discuss familiar aspects of the operation of a single mag-
netron into a passive load, including the input impedance of a resonant cavity,
the operation of a magnetron into a non-resonant load, the startipg of a magne-
tron, and the operation of a magnetron into a frequency-sensitive load, including
& dlscussion of the stability or instability of modes., Next we come to the main
toplc, the operation of a magnetron with an external sinusoidal signal., We find
that the external signal is equivalent to an external admittance whose phase de-
pends on the phase difference between magnetron and signal. The magnetron will
lock to the signal, with such a phase difference that the resulting reactance
of the external signal pulls the megnetron frequency to equal the frequency of
the signal, If the frequency difference between magnetron and signal is great,
and the amplitude of signal small, sufficient frequency pulling cannot occur,
and locking does not take place, but the freguency of the magnetron can be mod-
ified, and harmonics introduced into its outnut. If the external signal is re-
placed by another magnetron, or other magnetrons, there is a similar behavior,
and with sufficiently large coupling and sufficiently small frequency differences,
coupling will occur, with operation at a weighted mean of the frequencies of the
various magnetrons.



THE PHASING OF MAGNETRONS

The problem of operating a number of magnetrons in phase with each other
1s encountered whenever power greater than that produced by a single magnetron is
desired, as in linear accelerators, or in high power radar equipments. This report
presents some of the main theoretical aspects of the problem, as they are en-
countered in the design of the linear accelerator, though it does not treat the
specific application to the accelerator. Further experimental work is under way in
that project, and no doubt further developments of theory will be indicated as the
project progresses. For completeness, this report includes not only information
regarding magnetron phasing, but some discussion of magnetron operation in general,
and operation into a resonént load.

1. I ce o R Cavity. — A magnetron cavity is a resonant cavity,
provided with an output lead, generally a waveguide. One fundamental property of

the magnetron is the input impedance looking in through that waveguide output, as

a function of frequency, particularly for frequencies near the resonant frequency

of the mode in which it operates. This impedance can be measured by putting a slotted
section and standing-wave detector in the output, feeding in a signal from a signal
generator, and measuring standing-wave ratio and position of standing-wave minimum

as a function of frequency. (See J. 0. Slater, "Microwave Electronics", Rev. Mod.
Phys., 18, 441 (1946), for this and many other points. We shall give references

to this report’by the abbreviation ME, followed by chapter and section numbers.
Standing-wave ratios are treated in MB, I, 10.) At a frequency considerably removed
from resonance the standing-wave ratio will be very high (of the order of 40 db), and
the position of standing-wave minimum will vary only slowly with frequency. Inter-
polating between the positions of standing-wave minima on both sides of resonance,

we can get a position which the minimum would have on resonance (we can determine
this directly if the magnetron is tunable, by tuning the resonance away from the
frequency where we wish to operate, determining standing waves there, end then tuning
back 80 that it resonates at the desired freguency). It is then desirable to use the
plane of standing-weve minimum on resonance as a reference plane for measuring the
magnetron impedance. Of course, there will be an infinite set of such planes, half
a gulde wavelength apart; we choose the plane closest to the magnetron, since its
frequency variation will be the least, This plane will henceforth be referred to

a8 the plane of .the magnetron., A similar plane of reference can be determined for
any resonant cavity, in the neighborhood of one of its. resonances.

Across the plane of the cavity, the impedance of the cavity as a function
of frequency may be approximately written in the form
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7 = ext .3z (1.1)
J(E .032) + 1 1
w°° w %

Here Z is the ratio of the impedance to the characteristic impedance of the guide
(as all future impedances and admittances will be, unless otherwise specified).

The quantity Qéxt’ called the external Q, measures the coupling of the cavity to

o° The quantity Qb is the unloaded
Q of the cavity. Z1 is & very small real quantity, measuring the very small imped-
ance leading to the standing-wave ratio of the order of 40 db off resonance (when
the first term is zero). We shall neglect Zy, though for 3 cm and particularly
for 1l-cm magnetrons, where the losses in the outputs are considerable, it is not
entirely negligible. Expression (1.1) represents a series combination of the small
resistance Zl’ with a parallel resonant circuit, in which the first term in the de-
nominetor is the capacitive susceptance, proportional to the frequency, the second

the output line. The resonance frequency is w

is the inductive susceptance, inversely proportional to frequency, and the third
is the resistive conductance, independent of frequency. The fundamental derivation
of (1.1) from electromagnetic theory is taken up in ME, III, 5.

By stending-wave measurements we can find the constantsof (1.1), as dis-
cussed in ME, IV, 2. The value of Z on resonance, neglecting Z), 1s Qb/qut; this
equals the standing-wave ratio on resonance. The value of Qext can be found from
the width of the resonance curve, as described in the reference above. The first
step in studying & magnetron is to determine the plane of reference, and these funda~-
mental constants of its circult, by cold test.

If the magnstron is operating, the effect of the electronic discharge will
be like that of a non-linear admittarce in shunt with the resonsnt cavity. That is,
if g+Jb is this admittance (where we shall choose the positive sign to represent the
case where the magnetron is delivering power out of the output), and if C is an ef- '
fective cepacity of the magnetron cavity, the input impedance looking into the

magnetron is
1/q
7 = ™ oxt (1-2)
w ) 1 b
G-3D v 5 %2
] (] o

in which we have neglected Zl.
the earlier case (1.1), since the magnetron was producing no power, we had to feed a
signal from an external signal generator of frequency w into the cavity, and measured
standing-wave ratio and power with that signal, determining impedance from it. In

The meaning of (1.2) must be clearly understood. In
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(1.2), however, the magnetron itself is generating power. It is assumed that it is
this power that is being used to observe standing waves and impedance. The nega-
tive sign in front of the term in g indicates that the magnetron is a generator
rather than a load.

2. ) t tro to a Non-Regopant load. — Clearly when the magnetron
is operating, the standing-wave ratio which will be present in the output line will
depend on the load. We can exhibit this by writing (1.2) in a different way. % us
assume that the magnetron 1s operating into a load of admittance G+JjB (as before,
this represents the ratio of sdmittance to characteristic admittance of the line).
This admittance is to be computed across the reference plane of the magnetron. It
may be introduced by a standing-wave introducer, and in the wavegulde between load
and magnetron we assume a standing-wave detector, to messure the impedance or ad-
mittance seen at the reference plane. As in the preceding paragraph, we assume that
it is the magnetron's pcower itself which is used to measure standing waves. Now the
quantity Z in (1.2) measures the impedance looking into the magnetron. The impsdance
looking out of the magnetrom, or into the load, across the same plene, will be -Z,
and ite reciprocal, the sdmittance, will be -1/3 = G+jB. Rewriting (1.2), then, we
have

g . g2 _Zoy , L, OB (2.1)
Gwo W ¥ Qb Qext

Thig is the fundamental esquation of megnetron operation, and is discussed in ME, IV,
4 and 5.

To interpret (2.1) we mist think more about the characteristics of ths
electronic dischsrge. For a given value of d-c current and magnetic field in tha
magnetron, there will be a functional relation between the r-f voltege on the el-
ements of the magnetron, and the i-f current which flows. This reletion 1s dis-
cussed in ME V, 6 and 7. The r-t current of course has two components, one in phase
with the voltage, one out of phese. IExperimant shows that the component in phase
gith the voltage decreases with increasing voltage, in a roughly linesr manner, the
current being finite for very small voltages, but decressing to gzero at a finite
voltage. That is, approximately we may write

E-TVT

1_, (in phase) = Iz (2.2)
rf R

where E, R are constants (see ME IV, 4 for this equation), If this equation 1s
taken as correct, g, which is by definition the ratio of the component of current in
phase with the voltage, to the voltage, 1s

ER) _ (r)

(2.3)
Vee

»
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e hyperbola, becoming infinite for zero r-f voltage, decressing to zero when vrf = E,
& finite value. Whether this precise functional relation is assumed or not, the
essential point is that g is a definite function of vrf’ which can be found by ex-
periment. Furthermore, the power is determined in terms of r-f voltage from these
relztions; since the power is 1/2 the product of peak voltage and peak component of

current in phase with voltage, we have

1 2 '
= e - 4
P & (B -7, (2.4)
a parabola with maximum at V., = E/2, or helf the voltage at which g goes to zero.
In the more general case in which g is not given by (2.3), we may still assume this

same general sort of relationship, with a maximum power for some value of vrf‘

The component of current out of phase with the voltage is likewlse a
function of vrf’ as i3 its ratio to the voltage, which is b. We shell be partic-
ularly interested, not in b as a function of voltage directly, but in b as a func-
tion of g; for if g is known, Vrf can be found from it, and hence b, We find that
this relation is approximately linear, with a negative slope: approximately

b=b -g ten a, (2.5)

vhere bo’ o are constants., The quantity bo is difficult to find from experiment, and
1ts value is not well known, but it does not affect our results seriously. The con-
stant o 1s generally of the order of magnitude of 1/4.

With this understending of the nature of g and b, we may now return to
(2.1). Taking reel and imaginary parts of this equation, we have

o 0 ext
™ 2(w-w_)
a-:- = 52-59' * Q,B ~ wo + QB ' (2.7)
° 0 ext o oxt

where the latter form arises by writing v.u/t.uo - wo/w = (wz-woz)/wo = (Mo) (Mwo)/wo,
and setting w = wo except in the difference term Wt o Now with a given load, the
right side of (2.6) is determined. Hence g is determined, and from this the voltage
vrf and the power are known. Knowing the r-f voltage, we know b. Then, knowing B
from the load, (2.7) determines the frequency of operation,

These relations can be interpreted in a graphical way. VWe set up an ad-
mittance space, in which G 1s plotted as sbscissa, B as ordinate. Then first we plot
a line representing the electronic behavior, in which ve plot ngxt/ Cw, = Qe}:t/ %,
as abscissa, bQ,ext/Omo as ordinate. 3By (2.5), this is approximately a stralght line

with a negative slope, making an angle of -a with the axis of abscissas, Next we plot
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a line whose abscissa is G, and whose ordinate is B + 2bet(w-w°)/wo, the frequency
w being a parameter which varies from point to point of this line. Assuming as we
are doing at the moment thet G and B are independent of frequency, this is a ver-
tical straight line. The intersection of our two lines then, by (2.6) and (2.7),
determines the operation, its abseissa determining g and hence the r-f voltage and
power, and the ordinate determining frequency.

We can see from (3.7) that the frequency is affected by two things besides
the resonant frequency of the “cavity. First, if b changes, but B stays the same, the
frequency will change. This is the phenomenon of frequency pushing. As the d-c
conditions of operation change, the values of g and b as functions of r-f voltage
change. It is found that the effect on the relation (2.5) between b and g is a
change in bo, or a vertical displacement of the curve, without much change in a.

Thus by (2,7) there is an effect on frequency. The other effect is that of a change
in B, the reactance of the load. This effect on the frequency is called frequency
pulling, and from (2.7) we see that the emount of frequency pulling is inversely pro-
portional to bet‘ I fact, the pulling figure of a magnetron is defined as the ex-
treme change of frequency when the reflection coefficient of the load goes around a
a circle corresponding to a standing wave of 1.5, In our G-B space, this corresponds
to a circle extending from G = 2/3 to G = 3/2, and having thus a diameter of

3/2 - 2/3 = 5/6. The extreme variation of frequency produced by any admittance on
this circle then corresponds to the amount of vertical displacement possible without
losing an intersection between the circle and the line representing the relation be-
tween g and b, As in Figure 1,

PFigure 1
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wo see that this vertical displacement is related tc the diameter of the circle by
the relation, vertical displacement = (5/6)/sin a. Thus from (2.7), where we find
that the vertical displacement equals twice the chahge in frequency divided by the
average resonance frequency, we have

w

- 2 ___8
Pulling figure = T3 T . (2.8)

In the experimental study of magnetron operation, we adjust the output load,
or G+3jB, and measure the output power and the frequency of operation. We can then
plot comtours of constant power, and of constant frequency, on the G-B plane, From
what we have just seen, the contours of constant power should be vertical lines cor-
responding to ¢ = constant, and the contours of constant frequency should be a set of
lines sloping downward with anele a to the axis o abscissas, the contour for w = wo
being, from (2.5) and (2.7),

Q Q
B= |b g;t . -—351 tana| -G ten a (2.9)
’ [4] (¢]

and the contours for otker frequencies being digplaced upward by an amount 2bet(m-w°)/w°.
It is usually found experimentally that this vertical spacing of the frequency contours
is in good agreement with the value as predicted from the Qext as determined by cold
test; and that the power contours actually are vertical lines provided G is neither
excessively large or excessively small; in these limits, other complicsting features
come in, which we shall rot bother with at present,

Ve .ove spoken as if the values of g and b were known to start with, This of
course ie not tha case. It is rather through otservation of the operating characteris-
tics that these quantities are known. Thus an observation of frequency contours clearly
gives g as a function of b, using (2.6) and (2.7), and it is from such experiments that
we deduce the linear form (2.9) which approximately repressnts observation. Similarly
we can get the relation between g and v:f from the power ubservation. The power P 1s '
% e Vrfz. If we observe the power, and find g/Ow° from (2.6), from the mcasured G and
the values of Qb and Qext found from cold test, and if we can estimate C (which we can
do by study of the intermal circuit of the megnetron, in a way suggested in ME I11,6),
then we can get g. Hence from the power we find vrf‘ It is in this way thet the
spproximate equations (2.2) .ané. (2.3) have beep set up, to describe the resulis of

such experiments.

In determining the power, one coution is necessary. ot all the power pro-
duced by the osci'lator finds its way to the load; some of it is absorbed in losses
11side the megnstron. To find the fraction of power produced whicéh 1s delivered to tha
load, which i1s called the circult efficiency, we use Eq. (2,1). e note that it is like
a shunt combination of capacity, inductance, loss conductance proportioral to I/Qb’ and

load ccnductance proportional to G/Qext’ as well as load susceptence, Since in a
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parellel circuit there is the same voltage across all elements of the circuit, the
pover dissipated in the magnetron loss will be to the powsr dissipated in the load
as l/Q,o is to G/Qett' Thus we shall have

G
- . (2.10)
']c G + Qextho

We must in every case divide the observed power by the circuit efficiency, in order to
determine thes power produced by the megnetron, which we must use in finding the re-
lation between g and vrf'

We have plotted the results of observation in a G-B plane, and this plot
is the most useful for theoretical interpretation., However, in practice, it is
common to plot in a Smith chart, for convenience in making transformations from one
point of the line to another. Such a plot is generally called a Rleks dlagram, though
Rieke himself has used the plot in the G-B plane more then in the Smith chart., We shall
not go further with the appesrance of the Rieke diagrem, but shall assume in all cases
that the results of observztion are to be interpreted in a G-B plane. In doing this,
it is essential that the plene of reference be that described at the beginning of this
section, The nature of the Rieke diagram in the Smith chart is Aiscussed in ME IV,5,
the Smith chart or reflection coefficient plane being take. uwp in MBE, I,

3+ DIhe Starting of s Magnetron. — In the preceding section we have considered the steady
state operation of a megnetron. In starting, the situation is quite different. The
problem is discussed in ME IV, 6, and we reproduce the discussion given there with littl.
change. For a short time interval during the build-up, we may assume thet the amplitude
is increasing exponentially with the time, so that formelly we may treat the frequency

as being complex, the imeginary term representing the exponentisl increase, Thus if

w = w + :jwz, the time veristion of voltage will be according to e"wzt ejwlt. so that

-0, = d in Vrf/dt, vhere vrf is the voltege amplitude, Substituting a complex frequency
in (2.1), we have instead of (2.6),

w
B = ..l.. o+ ¢ ’.(“—-2- = -l- + —-q- +-2—ilnv ° (3‘1)
Ou;o Q‘o Qext % Q‘o oxt wo‘ at rt

Eq. (2.7) remains unchanged. Thus we have a differential equation for the time varia-
tion of vrf’ if we know g as a function of vrf' as for example from (2.3). If we assume
that value, the differential equation can be integrated, giving -

w
__.‘L(...L.. Ly
E 1 { 2 ‘Row, T j

Vo= l-e (3.2)
rf Rcwo (1/] Rcwo-i-l / QLT
where :
--]-'— = —-3-'-' + G .
N QL Q‘o Q‘ext
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In other words, from (3.2), we see that the voltage in the magnetron builds up ex~
ponentially, the time constant being determined fronm the loaded Q, QL' with an addl-
tional loading term l/RCwo. Since the loaded Q is ordinarily small (say 100 for a
10-cn magnetron), this indicates that it does not take many cycles for the magnetron
to build up the voltage in the cevity, and get into full operation. In our plot in
the G-B plane, we note that during the bulld-up we are on the b-g curve, but not at
the point corresponding to the G and B of the load. Instéad,’ we start with low
voltage, or large values of g, or far to the right in this plot, and gradually move
to the left along the g-b curve, until we come to the point corresponding to stable
operation.

the other hend, in many cases we wish to operate into a circuit, such for example

as a resonant cavity, which has an admittance depending on frequency. In fhis case
the quantity on the right side of Eq. (2.1) becomes a more complicated function of
frequency than we have so far considered. We caﬁ still handle the problem, however,
by the same fundamental principles we have been using, and at the same time can throw

more light on the nature of those principles.

Lot us rewrite (2.1) in the form

Q (w-w, ) Q
(erd)o2 = ylo) = 2)Q —0>= *+ -3-:—9 + Ow) + JB(w).  (4.1)
o . °

The function y(w) is a complex function of the variable w. In steady state operation

we are concerned only with real values of the frequency, but in the preceding section
we see that we need to consider complex frequencies as well, We may then consider the
mapping of the w plane onto the y plane, as in studying functions of a complex variable.
We may draw the contours corresponding to w, = constant, w, = constant, in the y plane.
Since y is an analytic function of w, the transformation will be conformal, and squares
in the w plane will transform into approximate squares in'the y plane. Thus we may
have a set of contours as in Figure 2. We have drawn lines to correspond to equally
spacel values of the real end imaginary parts of the frequency, and have arranged to
have the real part of frequehcy increasing in gemeral upward, and the imaginary part
increasing in general to the left, vwhich is the usual situation. Ve moy now draw on
the same plot the g-b line, plotting me/Owo as a function of ng xt/cwo‘ Then the
megnetron will start to build up its oscillation at a low value of r-f voltsge, or a
large value of g, Hore 1t will find a large negative value of w,, or will have a high
rate of build-up. Its voltage will increase, its g will decrease, or the point represent-
ing it will move to the left along the g-b curve, as shown by the arrow in the figure.
At the point P where the g-b curve intersects the curve wy = 0 1t will come to equilid-
rium, oscillating with the frequency given by the value of wy appropriate to this point.
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={w, INCREASING
<w, INGREASING

w, =GONSTANT

! (\ / | \(gfb CURVE

Figure 2

The equilibrium in the czse shown zbove is = stable equilibrium: an in-
crease of g, or decrease of voltage, brings us to a region of negative Wy, OF of
increasing voltage, while an increase of voltage carries us to a positive wz. or
decreasing voltage. Olearly we can also have states of unstable equilibrium, in
which a small chsnge of voltage in elther direction leads to o further change of
voltage. In the next figure (Fig. 3) we show the curve of w, = 0 for a case in which
the g-b curve intersects in three places rather then one. In the intersections marked
Pl’ Ps, we have stabllity, while in Pz we have instablility: a displacement from Pz
in the direction of P1 will result in a transfer to Pl’ while & displacement toward P3

will end ﬁp at Pz.

w,=0

#w, INCREASING

\g}cuave

represent stable

Figure 3

In a case as shown above, it 1s true that both Pl and P3

operating points, However, if the oscillator were started in the circumstances shown,

it is clear from our preceding discussion that the point representing the oscillation
will start at the right on the g-b curve, and will move to the left as the voltage
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builds up. Since it will meet point P3 first, this will be the state of oscillation
which will actually be set up. However, suppose that we have some control over the
circuit, say by a tuning kmob, so that we can shift the curve corresponding to w, = 0
bodily upward, or otherwise distort it. (This can always be accomplished, in a tunable
magnetron, by tuning it, for this changes wo in (4.1), and as we can see that shifts
the whole function y upwards). Then we can cause points P, and P, to approach each
other, and can remcve the intersectlon with the g-b curve represented by these points.
When this happens, the magnetron would find itself no longer in a steady state, and its
w2 would again be ;ess thén zero, so that the voltage would proceed to build up more.
The point would move further to the left on the g-b curve, and would end up at a point
near\Pl. If the magnetron were in continuous operation, we could then tune it back,
end would proceed to an equilibrium manner to point Pl‘ This could naturally not be done
in aApulsed magnetron, since each pulse represents a new start, and the pulses are so
fast that i1t is not practicablé to tune the load during a pulse.

S o — Until now, we have

considered the operation of a mognetron into a passive load. Now we come to the first
case of the phasing of magnetrons. The essentisl requirement for phasing of an oscilla-
tor is a load whose admittance depends on the oscillator's phase. Such a load is pro-
vided if there is sn external signal being fed into the osclllator through the output.

Let us see how this comes about,

Suppose the current and voltage being deliverad by the magnetron, at its

plane of reference, are 1«ejwt jwt’ and let there be an additional signal of
X fed in from outside, so that its current and voltage at the magnetron's
plane of reference are 11e‘1“1t and Vlejw t. We note that i1f, for instance, 11 is in
phase with 1, Vl will be out of phase with V, in order that the direction of power flow

in the magnetron power and the external signal may be opposite to each other. Now let
us superpore these two fislds, and divide current by voltage, to find the aduittance.
This will be

and V e

frequency w.

1 e e et [1 + (11/1)e3("’1"”)€| :

= & (5.1)
v ejwt R Vle"wlt v E_ + (vl /v)aﬂwl-w)t]

Ia other words, there is a time-dependent term varying with frequency w14» in the ad-
mittance. If 11/1 and vl/v are small, we may write this admittance as

G+ jB+a ej(wl'w)t, ’ (5.2)

vhere 1 v
G+ 38 =1/7, a= (6B - ). (5.3) .

Thus the ratio of a, the amplitude of the time-dependent term, to the constant ad-~
mittance, depends on the ratio of current or voltage in the incoming signal to thet
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sent out by the magnetron. We recall, as was mentioned earlier, that the two terms
11/1 and -Vl/V will have the same sign, Bven if a is not small, we still note from
(5.1) that the admittance is a bilinear function of the complex quantity od(wl-w)t.

As this quantity goes around a circle in the compléx nlane, which it does as time
increases, the corresponding point in the admittance plane must then also go arov.l

a circle. It will obviously rotate periodically, with the same perlod w,-w as béfore.
but it wlll no longer rotate uniformly, so that it can be described by a Fourier serles.
The expression corresponding to (5.2), then, for large smplitudes, will contain har-

morics of w,-w, as well as the fundamental, For our purposes we may neglect these

1l
harmonics, and assume an expression of the form (5.2) in all cases.

Under the action of this time-dependeat admittance of the load, there will
be a frequency-pulling phenomenon in the magnetron. This phenomenon has been de-
scribed, in very genefal terns, by Huntoon and Welss (Synchronization of Oscillators,
Technical Report of National Bureau of Standards, Division XIII, Ordnance Development
Division, Section 6-Electronics, Radiati&n Group, July 24, 1946). Since we shall be
concerned with the phase of the oscillator, as well as its freque?cy, let us assume
that its phase is ¢, so that its frequency of operation w equals #, and we may replace
wt by 6., Then the admittance (5.2) becomes G + jB + a ej(wlt°¢). In this form it is
obvious that the admittance depends on the phase of the magnetronm, and it is natural
that 2 very tight locking of the phase is possible.

Before proceeding with the mathematical discussion, we can give a qualita-
tive discussion of the process of phasing which proves on analysis to be correct. We
start from our fundamental equation (2.1), but modified to include the phase-dependent
load which we are now considering. That 1s, we have '

J(wlt - ﬂ) . (5n4)

glv _ J(.u‘.’ _2_0.)*_]_.*_&4"13*&8
wo w Q

Gwo (o) Qext

Th> time-dependent térm in (5.4) may be separated, in the usual way, into real and
imaginary parts, each of which depends on the phase difference between magnetron and
external signal. If we let this nhase difference be 8. defined by

t, ' (5.5)

0 =0- w,

and if for convenience we assume that a is real, these real and imeginary parts of
(5.4) are

Z 1 G a_cos ©

. " T T, ’ (5.6)
o o] oxt axt

v z(w-wo) 3 a sin 6

2 - v 3 3 . (5.7)
o [] ext ext



We now consider (6.7). After solving for frequency w, it indicates a fre-
quency da)ffering from the velue we should have without the incoming signsl, by the
2Q° 8 sin O, provided @ can be treated as a constant. But by (5.5), © can
be constalh tonly if P = Wy, or ifw= Wy . That is, this cen be true only if the
magnetron is locking to the external signal. In this case, we may solve (5.7) for

sin 6, finding

amount

. 1}
asing _ 2% . B p _ 2w (5.8)
Q = Tw ) = Cuw_ w ’
oxt 0 oxt o °

where w' is the frequency with which the magnetron would operate with the existing B
(frequency pulling) and b (frequency pushing) in the absence of the external signal.
Equation (5,8) suggests that there will be a solution in which the magnetron locks to
the signal, with a definite phase difference @, which reduces to zero when the external
signal has exactly the frequency with which the megnetron would operate without the
eignal. The maa':imﬁm valus which sin © csn have is of course *1; and this fixes extreme
limits for Wy, the frequency difference between the signal and the natural frequen-~
cy of magnetron operation, beyond which locking is impossible. For a constant value of
‘@, (5.6) then indicates that the external signal will have the effect of adding a re-
sistive as well as a reactive term to the load, and this, by the principles discussed
in earlier sections, will result in a modified r-f voltage and power., With only sin @
kmown from (5.7) or (5.8), the sign of cos 6 is ambiguous, but we shall show later

that the sign is such that when the magnetron is locked to the signal, a cos 6 is
negative, so that the signal acts like a negative conductance, or the negative sign
rerpres?nts a power-flow from the signal :I'.nto the megnetron., Thies term is maximum when

w =w, and reduces to gzero when w, - @ is at its extreme limit.

The condition of locking in,which we have described,is a steady state, but it
is obviously not the general solution of the problem. In the next section we shall set
up a differential equation, following Huntoon and Weiss, which represents the process
of approach to this steady state. We shall find that if the external signal 1s suddeniy
impressed, the phase will repidly adjust itself to the proper value (5.8), with a time
constant substantlially the same as that by which the r-f ‘voltage adjusts to its final
value, as discussdd in Sec. 3, On the other hand, if the sigmal frequency is too far
from the magnetron frequency for locking to occur, we shall show that the signal per-
turbs the magnetron operation, in that it tends to pull the magnetron frequency toward
the signal frequency, and at the same time introduces harmonics into the magneiron
operation, both phenomena becoming large as the signal approaches the limiting frequency
at which 1t can produce locking.

6. Anplvsis of the Process of Locking. — To set up a differential equation c'lescribing
the process of locking, let us itart with (5.7), introducing the frequency w as in

(5.8), and let us replace w, which equels §, by & + w,, from (5.5). Then we have
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() + (w'-o)l). (6.1)

This differential equation may be solved at once, by multiplying by dt, dividing by
the right-hand side, integrating, and solving the resulting equation. Tl_m answer
is

2

tom & e aw 14 eA(t—to) (6.2)
an 5 z —— . -1 T t_to 6.
2w, -0 )Q (w0 )Q 14 1-¢ .

where

aw 1 2
A =\/(2Qe:1j - (wl-w) R

Here t_ is the constant of integration. This differential equation (6.1), and its
solution are discussed by Huntoon and Weiss and its application to the phasing of
triode circuits was discussed by Adler, Proc. I.R.E., 34, 351 (1946).

There are two cases of this solution, depending on whether the magnitude
of wl—w' is greater than or less than amo/QQe xt* From our previous discussion, par-
ticularly of Bq. (5.8), we see that the case where wl~w' is less then this quantity
is the case where the magnetron locks to the signal, and the case where it is greater

is that when the magnetron does not lock in, Let us first consider the case of locking.

For the case of locking in, A is real. Then as time goes on, the exponential
in (6.2) becomes infinite, snd tan 6/2 approaches a limiting value determined from (6.2).
By a 1little trigonometric manipulation, we can show that the corresponding value of

o (' )R
2(w-w
@ = n - ein? __ﬁ____e_x_i_; (6.3)
o

\‘where in (6.3) we sre to use that particular value of the inverse sine which goes to

. zero when its argument goes to zero. Thus in this limit sin © approaches the value
z(ml--«»')Qe xt/wo’ the value derived in (5.8) for the limiting value, In other words,

since © approaches a constant value, the msgnetron locks in, as described earlier., Now,
however, we have determined the time constant A with which this locking in is accomplished.
At the same time we find from (6.3) that the value of © which corresponds to locking in

is thet which approaches the magnetron frequency w'. so that the term a cos € in (5.6)
_approaches a negative value, indicating power flowing from the signal into the magnetron,

as we have previously mentioned.

If the external signal is suddenly applied, as we have seen, the phase of the
magnetron will gradually pull in to its limiting value, and it is easy to see from (6.2)
thet 6 will never vary by more than m in the process. In other words, the locking in
in frequency occurs immediately, but the phase gradually adjusts itself. At the seme
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time, of course, according to (5.6), the r-f voltage and power output must adjust them-
selves. We may compare the time constant by which this power adjustment will occur
with that for phase, by comparing Eqs, (5.6) and (3.1). At the instant when the ex-
ternal signal is epplied, g will find itself out of adjustment for the new load.

Taking for simplicity the case-where cos 8 = -1, we see that ~2/Q,, 1s to be identi-
fied with (2/«»0):1 1n Vrf/dt. Thet is, the time constant for approach of r-f voltage

to equilibrium in this case is awO/BQ,ext, which by (6.2) is the same as the value of
the time constant A for approach of phase to equilibrium. We note from (6.2) that as
wl-w' approaches amo/,?Q,e xt? OF a8 we approach the edge of the frequency band over which
lock-in is possidble, the time constant for locking in of phase becomes larger, or A
becomes smaller. Simllarly as cos 6 becomes less than unity, the time constant for ad-
Justment of voltage becomes larger,

Next we consider the second case, that where wl-w' is greater than 9‘”0/ Qg xt?
8o that locking in never occurs. In that case A becomes imaginary, and (6.2) can be
written in the form )

2
tan & = _(____g.)___ + \/1 ( 9 ......_) cot L A1 (t-t ) (6.4)
- T-——lT - nvYe
2 2w1-w Q’ext 2"’1 4 Q’ext 2 °

vhere A' = A1, Por large values of ml-w', this approaches tan 8/2 = cot A'(t-to)/z,
80 that @ = 7 - A'(t-to) =T - (wl-w')(t-to). Then from(5.6)we have § = w', so that the
frequency of the magnetron is unaffected by the external signal, For smaller values of
wy-w', however, the situation will be different. When A'(t-t ) increases by 2m, © will
still decrease by 2n, so that we shall still have the average time rate of change of

8 equal to -L’, but © will no longer be a linear function of time, It will instead be
a linear function, with a periodic function of period 2n/A' superposed on it. Thus

in the first place, considering the value of A', we shall have

. 2 2
¢=wl-J(wlw') .- (:Z" ) (6.5)

ext

as the average frequency of the magnetron. This 1s & value which equals the frequency
of the external signal at the edge of the lock-in bend, but which gradually r‘educes to

_ the unperturbed frequency w' of the magnetron as the signal is tuned far from the
magnétron's frequency. At the same time, on account of the periodic vgriation of ©
with time, we shall have essentially a frequency modulation in the magnetron's output,
with side bands whose frequencies sre integral multiples of Iy /2n. This quentity is the
frequency difference between the magnetron and the external signal.

We may expect, then, the following situation as a magnetron is operated con-
tinuocusly, and a continuous external signal is tuned closer and closer to the magh.etron‘s
frequency. As the external signal approaches the frequency for which lock-in is possible
(a frequency which is further from the magnetron'!s normal frequency, the greater the em-
plitude of the signal, or the greater the frequency pulling of the megnetron), the mag-
netron's frequency will pull toward that of the external 'signél, and at the same time
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side bands will build up, separated from the magnetron frequency by integral multi-
ples of the frequency separation between the magnetron and signal frequencies. These
side bands will increase in intensity as the external signal comes closer to locking
the magnetron. Finally lock-in will occur, the side-bands will disappear, and the
magnetron will operate in .le same frequency as the external signal., As the signal

1s tuned to the natural operating frequency of the magnetron, the magnetron will fol~-
low its frequency, but will be changing its phase with respect to the external signal.
As the external signal is tuned away from the magnetron resonance on the other side, the

same events will be observed in reverse sequence.

The writer has not carried out such experiments with c-w magnetrons, but has
performed an expsriment with two reflex klystrons coupled to each other through sn
attenuator, the spectra of the two being observed by a probe in the line joining the
two klystrons. As one of the klysirons was tuned toward the other, phenomena just
like those of the preceding paragraph were observed, the two frequencies of the os-
cillators as observed on a spectrum analyzer pulling together, very 6onspicuous har-
monics building up. and finally the two oscillators locking together, and tuning to-
gother with the tuning adjustment of either oscillator. The theory of this section was
not avallable at the time these observations were made, so that no test was made of
the numerical aspects of the theory. However, one observation was made which bears
out the correctness of the theory. We should expect that if the frequency difference
betwsen the incoming signal and the oscillator remained fixed, and 'if the strength of
the incoming signel was increased by decreasing the attenuation between the two
oscillators, we should approach the condition of lock-in, just as if we brought the
two frequencies together. This was observed in a very conspicuous manner. With
the two oscillators tuned some distance apart, ard a considerable attenuation be-
twoen  them, the attenuation was then decreassed. The harmonics appeared, the fun-
domental frequenciss of the two oscillators pulled together and they finally locked.

The phenomena we have been describing in the preceding paragraphs refer
to continudus operation of megnetrons or other oscillators. . With pulsed operation
we naturally expect the situstion to be somewhat different., As the magnetron is
started, if the external signasl is already present, we may expect the oscillation
to build up in voltage, and to stabllisze in phase, much as in the preceding discussion,
We must remember, however, that the spectrum as observed will be complicated by the
finite length of the pulse. The build-up time as derived from our discussion 1s
generally considerably shorter than the ordinary pulse length, so that the breadth
of the band in the spectrum representing the line will be smaller than the frequency
difference between external signal and magnetron, This would not always be the case,

however, end a more complete discussion than given hers would be necessary to describe
the appearance of the spectrum in all cases.

7. Operation of Two Magnetrons into a Single Ioad, — In our discussion of the pre-
ceding section, we have ~gsumed the external signal to be unaffected by the behavior
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of the magnetron which 1t was phasing, This of course would gemerally not be the

case, If the external signal were produced by amother ogscillator of roughly the same
power output as the magnetron,acting through an attenuator to reduce its strength at
the magnetron, then the magnetron under discussion can equaelly well send power through
the attenuator to the oscillator producing the signal, and can react on that., We mst
expect then that in general each of two of of several oscilllators coupled together will
affect the others, in a symmetrical manner. We shall find,' however, that this does
not affect the results in an important way.

As a first indication of this, let us consider the two oscillators, coupled
together. Let the phase of one be ¢1, and of ‘the other ﬁz. The admittance of each
will then contain a term depending on the phase difference ¢2-¢1. Proceeding as in

(5.4), (5.8), and (6.1), we have

8 ' e E e (B8)

4% 1 zqeﬂ,l

] .
By oo v 22 g (p4). (7.1)
at 2 2Q‘ext.2 271 R

These must be solved simultaneously. Subtracting the first from the second, we have
an equation for ¢2-¢l:

Upspy)  (omy  ae

This is an equ\ation of the same form as (6.1), so the same discussion applies here as
there. If the resonant frequencies wl' and wa' of the two magnetrons are not too far
apart, they will lock in, the phase difference between them settling down to a con~
stant value. Then (7.1) will give the asymptotic values of 31 and 29 the frequencies
of the two magnetrons, which must equal each other for lock-in. These equations, or the
1imiting form of (7.2), will also give the final value of phase difference. From (7.1l),
we see that this will be such that its effect on each magnetron will be to introduce a
reactive load sufficlent to pull its frequency to the operating fraquemsy; which will
not equal the frequency of either magnetron, Rather, if the two magnetrons have iden-
tical properties (a) = &5 Qup 1 = Qgyy 5)s but are tuned to slightly different fre-
quencies, the operating frequency, from (7.1l), will be the average of the two frequencies,
80 that if either one is funed, the operating frequency will tune by one-half the amount
by which this one is tuned.

This last result suggests a different approach to the problem of coupled
magnetrons, which is legitimate and simple. Suppose we have two magnetrons coupled
thro'uéh a matched T to a load in the following manner, With a sultably matched T,
we cen find reference planes in each of the three branches, such that the sum of the
admittances looking out from the T into each of the three outputs equals zero; that
1s, the admittance looking into any output equals the sum of the admittances looking
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out the other two, or the admittances appear to be in shunt., Now let magnetrons be
attached to.two of these outputs, with such line lengths that the magnetron planes of
reference zre at the reference planes of the two branches, and let a load be inserted
in the third dranch, i1ts value being measuréd across the plane of reference in that
branch. Then by using (1.2) for the impedance looking into a magnetron, and its recip-
rocal for the admittance, and letting the load admittance be G + jB, the relation for
the shunt T is

w Y1\, 1 g b,y
- (0B = A { J(--T)+T T oy

%1
w_Y2),1 _ &t
+ Qext.z g.’(;z" ‘(;)-)+-é; - sza (7.3)

Here the external Q, unloaded Q, etc., of the two magnetrons are denoted by subscripts
1 and 2,respectively. We thus see that the magnetron circuits, and the electronic con-
ductances, of the two magnetrons are effectively in shunt with each other under these
circumstances. We can then proceed ag in Sec.2 to find the frequency of operation, and
r-f voltage. Suppose B, bl’ 'I:2 are zero, or that they are taken care of by replacing
), W, by w;', w,', a8 before. Then taking the imaginary part of (7.3), we have

0 = Qext,l(wll.) + Qext,z(“""’a')’ (7.4)

We note that this equation is satisfied by the values from the two simultaneous equa-
tions (7.1), provided we set w = 31 = aa in that equation, as we have if the magne-
trons are locked in, and if we assume a) = &y, and that the frequency difference between
°’1' and "’2' is small, Thus this eimple concept of the magnetrons' being in shunt leads
to the same result for the final frequency of operation as our previous method, based
on the differential equé.tion (7.2). This final frequency, found by solving (7.4),
is

! '
® Qart,1 * %2 %oxt,2

w = ——— ’ (7.5>
Qxt,1 ¥ Yoxt,2

a weighted mean of the frequencles og the two magnetrons, weighted im proportion to
their external Q's; that is, a m@eﬁron with high external Q, or low pulling figure,
tends to fix the final frequency more than one with low external Q, or high pulling figure.

We can look at Bq. (7.3) in another way. Let the admittance

Uyt 200yl + 1/Q, - (i) 0}

which we see looking into the second magnetron across its plane of reference be called
(}2+,132, where of course for the operating magnetron 02 will be negative. Then we can
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write (7.3) in the form -

)

g1+Jb1 © w, 1 (G+3B + Gz + 332)
——--—c m = m—- - T + + Q v— . (706)
171 1 q ext,l

If the phase of magnetron 1 is ¢1, that of magnetron 2, ¢2. then the admittance G,+jB,
as interpreted by the first magnetron will contain a phase factor ed(¢2'¢l), as before,
80 that (7.6) is equivalent to (5.4), Furthermore, we can find the value of & by con-
;idering the properties of magnetron 2, For instance, suppose each magnetron is designed
to operate into a matehed load. Then each of the terms on the right side of (7.3) will
equal -1, when the load is correctly chosen. To have the two magnetrons operating into
proper loads when connected by the T, we must clearly have the load (G+3jB) of (7.3)
equal to 2, or have twice the admittance of a matched load, If then the magnetrons

are operating in this manne-, the quantity Gz+532 as seen looking into magnetron 2 will
be -1, so that by comparing (7.6) and (5.,4) we see that in this case a = 1 (or -1, which
amounts to the same thing, since we have a phase at our disposal in the angle ©)., This
allows us to use our analysis of Sections 5 and 6, and to conclude thzt the maximum
frequency difference with which locking is possible, with this arrangement of magnetrons
and load, is wllzqoxt,l + wz/ZQext’a. This means, s8 fer as order of mognitude is
concerned, that if the resonance curves of the two magnetrons, as Jstermined by their
loaded Q's, overlap in frequency, they will lock in with each other, This of course

is a tighte> locking then we often find, since if there is a decoupling between the
magnetrons, by an attenuator or other means, which we do not have with this case of

the matched T coupling, the constants a, and a, of (7.2) may be much less than unity,
and the corresponding limit of locking-in may be mch smaller.

8, tio X trong into & S Load. = We can now generalize the results of
the preceding section to the operation of N magnetrons into a single loed. Let us suppose
we can set up a circuilt, possessing the same properties as the matched T in our pre~
ceding case; that is, a cavity possessing N+l outputs, such that the sum of the admit-
tances locking out the N+l outputs equals zero. We then have an equation similar to
(7.3), i X magnetrons are attached to N of the outputs, snd an admittance G+jB to the
other, except that there are N terms on the right side of the equation. If each mag-
netron ie designed to operate into a matched load, we then wish to make G = N for best
operation, 8ince it 1s difficult to make a load with this lerge admittence, it is more
convenient in practice to have N outputs for magnetrons, and N for loads, all effece
tively in shunt with each other, and to pu: matched loads at each of the load outyuts.

A practical method of realizing such a circuit has been described by Bostick, Everhart,
and Labitt, Technical Report No. 14 of Research Laboratory of Electronics,September 17,1946.

Setting up our circuit as we have just described, we may then write an equation
1ike (7.6) but differing from 1t in thet there will be magnetron admittences from 2 to
N on the right-hend side. We really should handle this problem by simultaneous equa-
tions, as in (7.1), but we shall not do that at this tima. We may, however, get a
good idea of the physical situation by assuming that N-1 of the magnetrons are already
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locked in phase, and asking what the remaining one will do. Then in (7.6) all the
terms from Gz*,sz to GN*JBN will have the same phase, say ¢2. Thue we shall have an
equation like (5.4) only now the quantity corresponding to a will be equal to (N-1).
This very large value will result in an exceedingly strong' tendency for the remaining
oscillator to lock in with the others., In other words, the more magnetrons there are,
the more strongly they will lock in. Of course, the situation when they start, all
out of phase with each other, will be complicated. Nevertheless, from the nature of
the equations governing them, it is to be assumed that the phases will very soon bring
order out of chaos. Each magnetron will try to lock in to the mean phase of all the
others, this will tend to bulld up the strength of this mean, and it can be assumed
that in a very short time, a common phase will be established, to which any magnetron
which wanders away can be stabiiized. The frequency of joint operation will be deter-
mined by an extension of Eq. (7.5), & weighted mean of the frequencles of all the mag-
netrons, weighted by t!mir external Q's. In this synchronized operation, it will of
course follow that all the loads, assuming they are matched, will operate in phase with
each other, since they are effectively in shunt with each other. Thus thess matched
loads might wéll be the inputs to a set of radar antennas, which then will all operate
in phase, forming an antenna array.
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