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Supersonic ejectors in refrigeration
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Main objectives of this study
Short term:

- Assess the ability of CFD to represent the operation range of a supersonic ejector in a simple case: 
single phase, known properties: Air

- Choose the best suited turbulence model among those giving reasonable results in comparison to the 
computational cost:

- k-epsilon
- Realizable k-epsilon
- RNG
- k-omega and k-omega-sst
- RSM

- Correctly predict some local (shocks position…) and global (entrainment rate, pressure recovery) 
features   

Long term:

- Have a better understanding of involved phenomena (local physics, that 1-D models cannot provide)

- Set up a reliable tool for geometrical design

- Use CFD to model ejector in refrigeration with refrigerants and two phase flow 

Boussinesq hypothesis
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Numerical tools

Adaptation following the 
pressure gradient, and y+ 
close to walls

- CFD package FLUENT: F.V.

- Roe flux splitting for inviscid fluxes

- Time marching technique (implicit Euler)

- Time preconditioning (for low Mach)

- Algebraic multigrid solver (block Gauss - 
Seidel)

-Adaptative structured-unstructured mesh

- Standard (equilibrium) wall functions
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Flow Facility (IGE*) – Computational domain 
*: Institute of Applied Energy, CREST-CNRS, Belfort, France
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- Axisymetric computational domain 

- Equivalent cross section for the secondary flow

Computational domain

m2 = 0 or constant
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Measurements (IGE): the centerline pressure
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Flow physics

- Probe with 1 mm external diameter

- Hole diameter = 0.3 mm

- Pressure transducer
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Comparison with experiments: 
Centerline pressure: without probe modeling 
(No secondary flow)

None of the turbulence models is able to 
completely reproduce shock reflections in 
terms of:

- Phase

- Strength

However the average pressure recovery is 
properly modeled.

P1 = 5 atm

m2 = 0. kg/s 
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Centerline Pressure: with probe modeling 
(No secondary flow)

- The probe has a significant effect even though its size is small

- The numerical results are all improved with the probe modeling

- The RNG model gives the best results among k-epsilon based models and RSM

- The most important discrepancy is observed in expansions (35-50%) (condensation)

- In compressions, it is about 10%

P1 = 5 atm

m2 = 0. kg/s
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Comparison between RNG and k-omega 
models 
(No secondary flow)

- The standard k-omega model overpredicts 
shocks downstream the fourth shock

- RNG and k-omega-sst results comparable

- Both models give the same pressure 
recovery value further downstream (not 
shown)

P1 = 5 atm

m2 = 0. kg/s
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Other operation conditions

P1 = 4 atm
P1 = 6 atm

m2 = 0. kg/s



Ressources naturelles
Canada

Natural Resources
Canada Canada

Measurements (IGE): the non-mixing length
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* Power:1.5 kW in the blue line

* Fmirror = 300 Hz

* Light sheet with parallel edges (thickness = 0.3  
mm)

* Natural marker: water droplets issued from 
condensation (diameter = 0.1     m)

* Additional markers: 1   m oil droplets
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Supersonic ejector operating with a 
secondary flow: Non-mixing length
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Non-mixing length results

P1 (atm) 4 5 6

P2 (measured) (atm) 0.78 0.68 0.4

P2 (computed) (atm) 0.61 0.52 0.4

Lm (measured) (m) 0.13 0.17 0.21

Measurements error (%) 15 12 9.5

Lm (computed) (m) k-omega 0.14 0.17 0.22

Lm (computed) (m) RNG 0.16 0.18 0.22
Error/measurement (%) (Lm )

K-omega-sst
8 0 4.8

Error/measurement (%) (Lm )

RNG
23 6 4.8
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Concluding remarks
* Ejector with zero secondary flow: 

•RNG and k-omega-sst models provide good and comparable results. 

•More discrepancies in expansions (condensation?)

* CFD-experiments integration: CFD revealed that intrusive measurement systems 
should be included in models for supersonic flows

* Preliminary tests conducted with induced flow have shown that the k-omega-sst 
model accounts best for the mixing

⇒ A wide range of operating conditions needs to be modeled with induced flow: non- 
shocked to shocked ejector

⇒ + More realistic boundary conditions at the secondary inlet: total pressure

⇒ To check : - entrainment ratio: m2/m1

- local profiles

To ascertain the selection of the

k-omega-sst model
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