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Supersonic ejectors in refrigeration
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Short term:

- Assess the ability of CFD to represent the operation range of a supersonic ejector in a simple case:
single phase, known properties: Air

- Choose the best suited turbulence model among those giving reasonable results in comparison to the
computational cost:
- k-epsilon R
- Realizable k-epsilon
-RNG - Boussinesq hypothesis
- k-omega and k-omega-sst
- RSM ~
- Correctly predict some local (shocks position...) and global (entrainment rate, pressure recovery)
features

Long term:

- Have a better understanding of involved phenomena (local physics, that 1-D models cannot pro
- Set up a reliable tool for geometrical design

- Use CFD to model ejector in refrigeration with refrigerants and two phase flow
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- CFD package FLUENT: F.V.

- Roe flux splitting for inviscid fluxes

- Time marching technique (implicit Euler)

- Time preconditioning (for low Mach)

- Algebraic multigrid solver (block Gauss -
Seidel)

-Adaptative structured-unstructured mesh
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- Standard (equilibrium) wall functions

Adaptation following the
pressure gradient, and y+

close to walls
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Flow Facility (IGE*) — Computational domain
*. Institute of Applied Energy, CREST-CNRS, Belfort, France ;

Air
compressor Secondary nozzle
Primary nozzle

Induced flowrate Primary _J

mi+ m;
Air measurement - ‘d=12mm  —————] |.D =24 mm
filters flow =) Pa
Manometer (P n mu, Py d*=8mm
Y U [ ] | | Mixing tube Diffuser
Orifice _ _
flowmeter Surrounding T X=15mm L =240mm
Compressed m | P2
atmosphere
. . Yy Induced flow
air reservoir Orifice flowmeter Ejector I (3 inlets at 120°)
,I, I|>< Atmospheric m2 = 0 or constant
> ——
Pressure 6 pressure
control valve Manometer
Primary flowrate Absolute Pressure 1 1
measurement Daneducer Computational domain
L L |
I 1
- AXi tri tational domain 2 ?
XISymetric computational aomal : :
: 3

- Equivalent cross section for the secondary flow '
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Measurements (IGE):
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‘Comparison with ex

(No secondary flow)

None of the turbulence models is able to
completely reproduce shock reflections in
terms of:

- Phase

- Strength

However the average pressure recovery is
properly modeled.
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Centerline pressure: without probe modeling
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Centerline Pressure:
(No secondary flow)
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- The probe has a significant effect even though its size is small
- The numerical results are all improved with the probe modeling

- The RNG model gives the best results among k-epsilon based models and RSM
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- The most important discrepancy is observed in expansions (35-50%) (condensation)

- In compressions, it is about 10%
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“Comparison betwee

G and k-omega
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Other operation con
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| Measurements

Laser Tomography
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‘Supersonic ejector operating with a
secondary flow: Non-mixing length

The laser tomography picture is treated by
Iy I'=0 an image processing software to deduce |,
(Desevaux et al.)
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Non-mixing length r

P, (atm) 4 5 6

P, (measured) (atm) 0.78 0.68 0.4

L., (measured) (m) 0.13 0.17 0.21

Measurements error (%) 15 12 9.5

Error/measurement (%) (L)
8 0 4.8
K-omega-sst
Error/measurement (%) (L)
" 23 6 4.8
RNG
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" Concluding remark

* Ejector with zero secondary flow:
*RNG and k-omega-sst models provide good and comparable results.

*More discrepancies in expansions (condensation?)

* CFD-experiments integration: CFD revealed that intrusive measurement systems
should be included in models for supersonic flows

* Preliminary tests conducted with induced flow have shown that the k-omega-sst
model accounts best for the mixing

= A wide range of operating conditions needs to be modeled with induced flow: non-
shocked to shocked ejector

= + More realistic boundary conditions at the secondary inlet: total pressure

— To check : - entrainment ratio: m2/m1 | To ascertain the selection of the

- local profiles k-omega-sst model
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