再论栅极谐振驱动的理论依据和应用范围
rb-sama2017/07/30高电压技术 IP:湖北
众所周知,当频率较高时,由于MOSFET结电容较大,导致栅极驱动的负荷很大,驱动电路实现起来比较困难。在实际工程中为了解决这个问题,人们发明了谐振驱动。

所谓谐振驱动,就是通过在驱动回路中接入一个适当大小的电感,与结电容构成LC震荡电路。此时,驱动器每次只需补充LC回路损耗的能量,而不需要每次都提供达到规定驱动电压所需的全部能量。这样一来,只需要使用很小的驱动功率,就能产生高电压的驱动波形。

有关基础知识详见参考文献[1],在我之前的帖子《关于TC442X芯片在高频小特斯拉线圈上的应用探索 》[2]中提供了应用的具体案例。

关于让驱动器“每次补充LC回路损耗的能量”,其中基本的原理是:让驱动器的驱动频率(激励频率),与LC谐振回路的固有震荡周期基本一致。或者反过来,让栅极谐振回路的固有频率,接近激励信号的频率。这样构成的系统,就叫做栅极谐振驱动电路。

对于常见的中小型特斯拉线圈,它的激励是从初级线圈取出的反馈信号。如果用到栅极谐振驱动,整个TC中就会出现两个固有频率:栅极谐振频率和初次级线圈的谐振频率。在下面的讨论中,我们默认初次级线圈的震荡频率起主要作用,决定整个TC的工作频率。实际工程中并不仅有这一种情况。

理解上述原理并不困难,但是如果没有打好理论基础,就容易得到机械化的推演。比如,近期有同学根据上述原理,认为如果栅极LC回路的固有震荡周期发生变化(比如随着温度不同),不再与激励频率相等;或者反过来,激励频率发生变化(比如随着电弧长度不同),不再与栅极回路的固有震荡周期相等,则谐振驱动就会失效。很明显,持有这种观点的同学对原理有一定了解,能够进行简单机械的理论推演,但由于缺少钻研更多理论知识的耐心,在分析问题时发生了顾此失彼的错误。下面就重新为大家梳理一下有关知识,希望有助于各位同学对栅极谐振驱动原理和应用有更深入的认识。

我们从频域来分析。谐振驱动时的损耗来源包括栅极电阻,线路的铜损、漏感等等。为了简便起见,这里只考虑栅极电阻。下图是不同栅极电阻下的系统准BODE图。
2.png
上图的物理意义是频率与增益的关系。为了明显一些,我们把Y轴替换为实际电压。

根据MOS管的原理,要使其完全开通,是有一个TS VOL的电压范围的。电压在此之上,MOS管进入开关状态。

从图像可以看出,在10V的典型驱动电压之上,该系统拥有526KHz的完全开关带宽。
换句话说,在526KHz的带宽内,谐振驱动是有效的。并非“一旦失谐就没有驱动力”,而是有一个”有效范围“。并且仿真只是随便选取的一些参数。通过仔细的设计,能够得到比上图更好的工作带宽范围。

扩大带宽有若干方法,比如,可以提高增益/反馈量,效果是驱动电压升高。此时,在更大的频率区间内,驱动电压足以开通MOS管。另一种方法是降低Q值,但降低Q值就会增加损耗,通常需要同时提高增益。不论哪种方法,很可能电压会提高到MOS管的栅极不能承受的程度。比如,上图中谐振点增益对应的驱动电压就超过了20V。为了避免损坏MOS管,可以增加适当的钳位二极管。采用上述这些方法,就能在稳定性、电路复杂度、工作带宽等方面取得平衡。

本文探讨了两种极端情况:
(1)假设驱动频率完全固定,栅极谐振电路通过提供适当的增益和带宽来适应驱动频率,以便当栅极谐振电路的固有频率发生变化的时候,电路也能稳定可靠的工作;
(2)假设驱动频率很大程度上是由后级,也就是MOS管推动的初级线圈、次级线圈的固有震荡频率决定的,由于TC的使用环境和电弧形状等经常发生变化,所以驱动频率并不是固定的。此时,栅极谐振电路以自己的工作带宽,来适应TC的震荡频率变化。

实际上,栅极谐振驱动型TC的工作链条比较长,其中有栅极LC、初级、次级等环节影响其工作频率,每个环节带来多大影响,与环路增益、Q值等都有关系,在某些特定的情况下,甚至可以出现以某个谐振频率为主,根据差拍频率产生断续震荡的现象。但是世上无难事,TC毕竟是工程问题,它的整个工作流程都可以用理论加以描述和预测,只要大家以积极认真的态度对待技术问题,像栅极谐振驱动电路这样的应用方法就能不断推陈出新,取得良好的效果。

参考文献
[1]    
attachment icon 利用附加电感实现高频功率MOSFET谐振栅极驱动.pdf 130.66KB PDF 363次下载 预览
[2]    文章链接https://www.kechuang.org/t/79441

[修改于 6年8个月前 - 2017/07/30 23:53:26]

加载全文
来自:电气工程 / 高电压技术严肃内容:专著/论述
62
 
1
已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也

想参与大家的讨论?现在就 登录 或者 注册

所属专业
所属分类
上级专业
同级专业
rb-sama
高压局 进士 老干部 学者 机友 笔友
文章
53
回复
1702
学术分
5
2010/05/02注册,1天3时前活动

曾是化学爱好者转到火箭爱好者最后变成电子爱好者的科创爱好者。

主体类型:个人
所属领域:无
认证方式:手机号
IP归属地:未同步
文件下载
加载中...
{{errorInfo}}
{{downloadWarning}}
你在 {{downloadTime}} 下载过当前文件。
文件名称:{{resource.defaultFile.name}}
下载次数:{{resource.hits}}
上传用户:{{uploader.username}}
所需积分:{{costScores}},{{holdScores}}下载当前附件免费{{description}}
积分不足,去充值
文件已丢失

当前账号的附件下载数量限制如下:
时段 个数
{{f.startingTime}}点 - {{f.endTime}}点 {{f.fileCount}}
视频暂不能访问,请登录试试
仅供内部学术交流或培训使用,请先保存到本地。本内容不代表科创观点,未经原作者同意,请勿转载。
音频暂不能访问,请登录试试
支持的图片格式:jpg, jpeg, png
插入公式
评论控制
加载中...
文号:{{pid}}
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

加载中...
详情
详情
推送到专栏从专栏移除
设为匿名取消匿名
查看作者
回复
只看作者
加入收藏取消收藏
折叠回复
置顶取消置顶
评学术分
鼓励
设为精选取消精选
管理提醒
编辑
通过审核
评论控制
退修或删除
历史版本
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}