已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也
第二章 遗传机制



  存在是永恒的;因为有许多法制保存了生命的宝藏;而宇宙从这些宝藏中汲取了美。——歌德
  

  11. 古典物理学家的设想决不是无关紧要的,而且是错误的
  
  于是,我们得到的结论是,一个有机体和它经历的全部生物学的有关过程,必须具有极其多的“多原子”结构,必须防止偶然的“单原子”事件起到太重大的作用。“朴素物理学家”告诉我们那是必要的,所以有机体可以具有足够精确的物理学定律,并依这些定律建立它的很有规律和很有秩序的功能。从生物学来说,这些先验地得出的(就是说,从纯粹的物理学观点得出的“结论,如何去符合实际的生物学事实呢?
  
  乍看起来,人们往往认为这个结论是无关紧要的。比如说,三十年前的生物学家也许已经讲过这一点了,可是,对于强调统计物理学对有机体的重要性不亚于其他方面的通俗讲演者来说,这个结论还是十分合适的,但实际上这也不过是人所共知的道路而已。因为任何高等生物的成年个体不仅是它的躯体,而且是组成躯体的每一个单细胞都包含着”天文数字“的各种单原子。我们观察的每一个具体的生理过程,不论在细胞内或在细胞同周围环境的相互作用中,看来是——或者三十年前已经认为是——包含了这么多的单原子和单原子过程,这就保证了物理学和物理化学有关定律的有效性,即使按照统计物理学关于”大量数目”的严格要求,也能保证定律的有效性;这种严格要求就是我刚才用根号n律所说明的。
  
  如今,我们知道这个意见是错误的。正如我们即将明白的,有许多小得不可思议的原子团,小到不足以显示精确的统计学定律,可是在生命有机体内,它们对极有秩序和极有规律的事件确实起着支配作用。它们控制着有机体功能的重要特征;在所有这些情况下,显示了十分确定而严格的生物学定律。
  
  我必须开始概要地讲一下生物学,特别是遗传学的情况;换句话说,我必须简要地说明这门科学的现状,可是我对这门科学不是内行。但我不得不这么做,很抱歉,特别是对任何一位生物学家来说,我讲的是外行话。另一方面,请允许我多少带点教条式地向你们介绍流行的观点。不能指望一个蹩脚的理论物理学家能对实验材料作出任何象样而全面的评述,这些实验材料,一方面来自大量的、长期积累的、无比机智的繁育试验;另一方面,来自最精密的现代显微镜技术对活细胞的直接观察。

  
  12. 遗传的密码正本(染色体)
  
  让我在生物学家称之为“四维模式”的意义上使用有机体的“模式”这个词,它不仅是指成年有机体的、或任何其他发育阶段上的有机体的结构和功能,而且是指有机体开始繁殖自身时,从受精卵到成年阶段的个体发育的全过程。整个四维模式已知是由受精卵的结构决定的。此外,我们知道,主要是由受精卵的很小一部分结构,即它的细胞核决定的。这个细胞核在细胞的正常“休止期”内,往往表现为网状染色质,分散在细胞内。但在极其重要的细胞分裂(有丝分裂和减数分裂,见下文)过程中,可以观察到由一组颗粒构成的、常常呈纤维状或棒状的叫做染色体的东西,它的数目是8个或12个,人是48个。但是,我应该把数字写成2×4,2×6……2×24……,并且按照生物学家习惯意义上的用词,我应该称之为两套染色体。单个染色体,有时虽然可以从它的形状和大小,清楚地加以区分和单个地加以辨认,但是,两套染色体几乎是一模一样的。我们马上就会明白,一套来自母体(卵细胞),一套来自父体(精子)。这些染色体也许只不过是我们在显微镜下看到的、被当作是染色体的一种轴状骨架纤丝,它把个体未来发育的全部模式,和个体在成年时的机能的全部模式都包含在一种密码正本里。每一整套染色体都含有全部密码;因此,一般说来,作为未来个体的最初阶段的受精卵里有着密码的两个副本。
  
  我们把染色体纤丝的结构称为密码正本时,我们的意思是说,拉普拉斯曾经陈述过一种直接揭示每一个因果关系的、洞察一切的思想,根据卵的结构就能告诉你在适宜的条件下,这个卵将发育成一只黑公鸡还是一只芦花母鸡,是长成一只苍蝇还是一棵玉米,一株石南,一只甲虫,一只老鼠或是一个女女人。我们还可以再补充一点,那就是卵细胞的外观是非常相似的;即使外观不相似,比如鸟类和爬虫类的卵就比较大,可是在与密码有关的结构上的差别并没有象营养物质的差别那么大。在这些卵中,营养物质是由于不言而喻的原因而增多的。
  
  当然,“密码正本”这个名词太狭隘了。因为染色体结构同时也是促使卵细胞未来发育的工具。它是法典与行政权力的统一,或者用另一个比喻来说,是建筑师的设计同建筑工人的技艺的统一。
  

  13. 身体通过细胞分裂(有丝分裂)而生长
  
  在个体发育中,染色体是怎样行动的呢?
  
  一个有机体的生长是由连续的细胞分裂所引起的。这样的细胞分裂叫做有丝分裂。考虑到我们的身体是由无数个细胞组成的,所以,在一个细胞的生命中,有丝分裂并不象人们所想的那样一种十分经常的事件。开始时生长是很快的。卵细胞分成两个子细胞,下一步发育成四个细胞,然后是8,16,32,64……等等。正在生长的身体的各个部分中,分裂频率并不是完全相同的,那样就会打破这些细胞数目的规则性。我们通过简单的计算便可推断出。平均只要50或60次连续的分裂,便足以产生出一个成人的细胞数,或者是这个细胞数的十倍,那就是把一生中细胞的更替也考虑在内了。因此,我的一个体细胞,平均来说,只是变成我的那个卵细胞的第五十代或第六十代的“后代”。
  

  14. 在有丝分裂中每个染色体是被复制的
  
  在有丝分裂中每个染色体是怎样行动的呢?它们是被复制了,两套染色体和密码的两个副本都是被复制了。这个过程在显微镜下已作了详尽的研究,并且是极其有趣的,可是它涉及的面太广,在这里不能一一细说了。突出的一点是:两个“子细胞”中的每一个都得到了跟亲细胞完全相似的、更完全的两套染色体的嫁妆。就染色体的宝库来说,所有的体细胞都是完全一样的。
  
  我们对这种机构虽然了解得很少,但我们不能不认为,它一定是通过某种途径同有机体的机能密切相关的,因为每个单细胞,甚至是不太重要的单细胞,都具有密码正本的全套(两份)副本。不久以前,我们在报上看到蒙哥马利将军在非洲战役中,要他麾下的每一个士兵都仔细了解他的全部作战计划。如果确是那样的话(考虑到他的部队有高度的才能和可以充分信赖,看来这可能是真实的),它为我的例子提供了一个绝妙的类比,在这个类比中,相应的事实都是完全真实的。最令人惊异的是在整个有丝分裂中,始终保持着两套染色体。这是人们揭示的最令人惊奇的遗传机制的明显特点,只有在我们接下去要讨论的那种情况中,才偏离了这种规律。
  

  15. 减数分裂和受精(配子配合)
  
  就在个体开始发育以后,有一团细胞保留着,以便在发育后期产生出成年个体繁殖所需的所谓配子,至于是精细胞或卵细胞,这要根据情况而定。“保留”的意思是指它们在这段时期内不用于其他目的,以及进行很少几次有丝分裂。例外的或减数的分裂(称为减数分裂),是这样一种分裂,就是在成年阶段,这些保留的细胞通过减数分裂最后产生了配子,一般只是在配子配合发生以前的很短时间内才有这种分裂。在减数分裂中,亲细胞的两套染色体简单地分成二组,其中一组染色体进入二个子细胞中的一个,就是进入了配子。换句话说,减数分裂并不象有丝分裂那样地发生染色体数目的加倍而使染色体数目保持不变,因此每个配子收到的只有一半,就是说,只有密码的一个完整的副本而不是两个,例如人只有24个,而不是2×24=48个。
  
  只有一个染色体组的细胞叫做单倍体(来自希腊文,单一)。因此,配子是单倍体,通常的体细胞是二倍体(来自希腊文,双份)。有三组、四组染色体,……或通常所说的在体细胞里有时有许多染色体组的个体,就称之为三倍体、四倍体……多倍体。
  
  在配子配合中雄配子(精子)和雌配子(卵)都是单倍体,结合形成的受精卵,是二倍体。它的染色体组,一个来自母体,一个来自父体。
  

  16. 单倍体个体
  
  还有一点需要加以纠正。这一点对于我们的研究目的来说,虽然不是必不可少的,但却是很有意思的,因为它表明,每一套染色体组包含了“模式”的确实是相当齐全的密码正本。
  
  也有一些例子说明减数分裂后并不立即受精的,单倍体细胞(“配子”)经历了多次有丝分裂,结果产生了全是单倍体的个体。雄蜂是没有父亲的!它所有的体细胞都是单倍体。如果你愿意的话,你可以叫它是一个大大扩大了的精子;事实上,也正如大家所知道的,起这样的作用正是雄蜂一生中的唯一任务。可是,这也许是一种荒谬的观点。因为这种情况并不是独一无二的。好多种植物,通过减数分裂产生单倍体配子,或称之为孢子,孢子落在地上就象一粒种子,发育成真正的单倍体植物,它的大小可以同二倍体相比拟。苔藓植物长有叶片的底部是单倍体植物,叫配子体,因为在它的顶端发育了性器官和配子,配子通过相互受精按通常的方式产生了二倍体植物,在裸露的茎的顶部生有孢子囊。通过减数分裂,在顶端的孢子囊中产生孢子,所以这个二倍体植物称为孢子体。当孢子囊张开时,孢子落地发育成长为有叶片的茎,如此等等。这个事件的过程称为世代交替。只要你愿意,你可以认为人和动物也是如此的。不过“配子体”一般是寿命极短的单细胞一代,至于是精子还是卵子那看情况而定。我们的身体相当于孢子体。我们的“孢子”是保留的细胞,通过这些细胞的减数分裂产生出单细胞的一代。
  

  17. 减数分裂的显著关系
  
  在个体繁殖过程中,重要的、真正是决定命运的事件并不是受精而是减数分裂。一组染色体来自父亲,另一组来自母亲。不论是机遇还是天意都无法干预这一事件。每个男人正好是一半遗传了他的母亲,一半遗传了他的父亲。至于有时是母系占优势,有时是父系占优势,那是由于另外一些原因,这些原因在后面会讲到的(当然,性别本身也就是这种优势的最简单例子)。
  
  可是,当你把你的遗传起源追溯到你祖父母的时候,情况就不同了。让我盯住我父亲的那一套染色体,特别是其中的一条,比如说第五号染色体。这条染色体或是是我父亲从他父亲那里得到的第五号染色体的精确复制品,或者是我父亲从他的母亲那里得到的第五号染色体的精确复制品。1886年11月在父亲体内发生了减数分裂并产生了精子,几天以后,精子就在我的诞生中起作用了,究竟是哪一个精确复制品包含在精子里,机遇是50:50。关于我父亲的染色体组中的第1,2,3……24号染色体都是这种情况,而我母亲的每一条染色体也同样是如此。此外,所有48条染色体都是各自独立的。即使我们知道我父亲的第五号染色体来自我祖父约瑟夫?薛定谔,而第七号染色体究竟是来自我的祖父还是来自我的祖母玛丽?尼玻格娜的机会还是相等的。
  

  18. 交换。特性的定位
  
  根据以上所说,已经是默认了、或者可以说是明确地表明了一个具体的染色体是作为一个整体,或者来自祖父,或者来自祖母。换句话说,单个染色体是整个地传递下去的。可是,在后代中却有更多的机会出现祖父母遗传性的混合。事实上,染色体并不是、或者说并不是总是整个地传递下去的。在减数分裂中,比如说,在父体内的一次减数分裂中,染色体分离以前,两条“同源”染色体彼此紧靠在一起,在这段时间里,它们有时是整段地进行交换。通过这种叫做“交换”的过程,分别位于染色体不同部位上的两个特性,就会在孙儿女那一代分离,这时,孙儿女将是一个特性象祖父,另一个特性象祖母。这种既不罕见也不经常的交换的事实,yi为我们提供了特性在染色体上的位置的宝贵的信息。如要作全面的说明,我们就要在讲下一章之前引进许多没有介绍过的概念(如杂合性,显性等),这就超过了这本小册子的范围了,所以我只谈一下要点。
  
  假如没有交换,由同一条染色体负责的两个特性将永远是一起遗传给下一代,没有一个后代会接受了其中的一个特性而不连同接受另一个特性的;可是,由不同的染色体负责的两个特性,将或者以50:50的机遇被分开,或者是必然地被分开。当两个特性位于同一祖先的同源染色体上的时候,那就是后一种情况,因为这种染色体是永远不会一起传给下代的。
  交换打乱了这些规律和机遇。根据精心设计的广泛的繁育试验,仔细地记录后代特性的组成百分数,就可确定交换的几率。人们在作了统计分析后接受了所建议的工作假设,即位于同一条染色体上的两个特性之间的“连锁”被交换打断的次数愈少,则它们彼此靠得愈近。这是因为在它们之间形成交换点的机会少了,而位于染色体另一端上的特性,就会被每一次交换所分离(这个道理,同样适用于位于同一祖先的同源染色体上的特性的重新组合)。用这种方法,人们可以期望根据“连锁的统计”,画出每一条染色体的“特性图”。
  
  这种预期已完全得到证实。在经过充分试验的一些材料中(主要是果蝇,但不仅是果蝇),受试验的特性确实是分成了几个群,群与群之间没有连锁,几个群就象是几条不同的染色体(果蝇有四条染色体)。每个群内可以画出特性的直线图,这个图可以定量地说明该群内任何两个性状之间连锁的程度,所以这些特性无疑是定位的,而且是沿着一条直线定位的,就象所建议的棒状染色体。
  
  当然,这里描绘的遗传机制的图式还是相当空洞而平淡的,甚至是有点质朴的。因为我们并没有说出,我们通过一个特性究竟了解到了什么。把本质上是个统一“整体”的有机体模式,分割成个别的“特性”,这看来既是不妥当的,也是不可能的。现在,我们在任何具体事例中实际说明的是,一对祖先如在某个方面确实存在着差别(比如,一个是蓝眼睛,另一个是棕色眼睛),那么,他们的后代,不是继承这一个就是继承另一个。在染色体上我们所定位的就是这种差别的位置(专门术语称之为“位点”)。我认为,真正的基本概念是特性的差别,而不是特性本身,尽管这样的说法有着明显的语言上和逻辑上的矛盾。特性的差别实际上是不连续的,下一章谈突变的时候,会谈到这一点,我希望到那个时候,迄今所提到的枯燥乏味的图式将变得较有生气和丰富多彩。
  

  19.基因的最大体积
  
  我们刚才已经介绍了基因这个名词,把它作为一定的遗传特性的假定性的物质载体。现在要着重讲两点,这对我们的研究是有重大关系的。第一,是这种载体的体积,或者更确切地说,它的最大体积;换句话说,我们对它的定位可以达到多小的体积?第二,是从遗传模式的持久性推论得出的基因的不变性。
  
  关于体积,有两种完全不同的估计方法。一种是根据遗传学的证据(繁育试验),另一种是根据细胞学的证据(直接的显微镜观察)。第一种估计在原理上是很简单的。就是用上面讲过的方法,把某一条特定的染色体的各种不同的(宏观的)特性(就以果蝇为例)在染色体上定位以后,测量那条染色体的长度并除以特性的数目,在乘以染色体的横截面,就得出了我们所需要的估计数。当然,由于被我们算作是不同的特性,仅仅是被交换所偶然分离的那些特性,所以它们的(显微的或分子的)结构不会是一样的。另一方面,我们的估计数显然只能得出最大的体积,这是因为通过遗传学分析而分离出来的特性数目,将随研究工作的进行而不断增加的。
  
  另一种估计,尽管是根据显微镜的观察,实际上也远远不是直接的估计。果蝇的某些细胞(即它的唾腺细胞),由于某种原因是大大地增大了的,它们的染色体也是如此。在这些染色体上,你可以分辨出纤丝上的深色横纹的密集图案。C.D.达林顿曾经说过,这些横纹的数目(他当时说是2000个)虽然比较多,但大体上等于用繁育试验得出的、位于染色体上的基因数。他倾向于认为,这些横纹带是标明了实际的基因(或基因的分离)。在一个体积正常的细胞里测得的染色体长度,除以横纹的数目(2000),他发现一个基因的体积等于边长为300埃的一个立方体。考虑到估计是很粗糙的,我们可以认为这跟第一种方法算出的体积是差不多的。
  

  20. 很少的数量
  
  我想起了在下面要充分讨论的是统计物理学对于所有事实的关系——也许我应该说,是这些事实对于统计物理学应用于活细胞的关系。不过让我们注意到应该事实,即在液体或固体中,300埃大约只有100个或150个原子距离,所以,应该基因包含的原子,肯定不会超过一百万个或几百万个。要遗传一种遵循统计物理学的,而且也是遵循物理学的有秩序、有规律的行为,这个数目是太少了(是从根号n观点来看)。即使所有这些原子全都是起相同的作用,就象它们在气体中、或在一滴液体中那样,这个数目还是太小了。基因肯定不是一滴均匀的液体,它也许是一个大的蛋白质分子,分子中的每一个原子,每一个自由基,每一个杂合环都起着各自的作用,同任何一个相似的原子、自由基或环所起的作用,多少是有些不同的。总之,这是霍尔顿和达林顿这些遗传学权威的意见,我们马上就要引用十分接近于证明这种意见的遗传学试验。
  

  21. 不变性
  
  现在让我们转到第二个有重大关系的问题上:在遗传特性上我们碰到的不变性的程度有多大,由此,我们必须把什么东西作为携带它们的物质结构呢?
  
  回答这个问题是无需作专门研究的。就拿我们谈到了遗传特性这个事实来说,就已经表明我们是承认了不变性几乎是绝对的。我们千万不要忘记,父母传给子女的并不是这个或者那个特征,比如鹰沟鼻、短手指、患风湿症、血友病、二色眼的倾向等。我们可以很方便地选这些特征来研究遗传规律。可是,这种特征实际上是“表现型”的整个(四维的)模式,是个体的可见的、一目了然的性质,它们没有什么明显的改变而被复制了好几代,它们在几个世纪里是不变的——虽然不能说是几万年不变——在每次传递中,负载它们的是结合生成受精卵的两个细胞的物质结构。这真是个奇迹。只有一个奇迹更伟大;如果它同我们所说的奇迹是密切有关的话,那也是在不同水平上的奇迹。我指的是这个事实:我们的全部存在,完全是依靠这种奇迹的奇妙的相互作用,但我们是有能力去获得有关这种奇迹的许多知识的。把这种知识推进到几乎能完全了解第一个奇迹,我想这是可能的。第二个奇迹则可能是超越人类理解之上了。
文号 / 209848

千古风流
名片发私信
学术分 7
总主题 363 帖总回复 1867 楼拥有证书:学者 机友 笔友
注册于 2010-02-10 19:14最后登录 2024-04-27 14:47
主体类型:个人
所属领域:无
认证方式:手机号
IP归属地:未同步

个人简介

暂未填写
文件下载
加载中...
{{errorInfo}}
{{downloadWarning}}
你在 {{downloadTime}} 下载过当前文件。
文件名称:{{resource.defaultFile.name}}
下载次数:{{resource.hits}}
上传用户:{{uploader.username}}
所需积分:{{costScores}},{{holdScores}}下载当前附件免费{{description}}
积分不足,去充值
文件已丢失

当前账号的附件下载数量限制如下:
时段 个数
{{f.startingTime}}点 - {{f.endTime}}点 {{f.fileCount}}
视频暂不能访问,请登录试试
仅供内部学术交流或培训使用,请先保存到本地。本内容不代表科创观点,未经原作者同意,请勿转载。
音频暂不能访问,请登录试试
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

插入资源
全部
图片
视频
音频
附件
全部
未使用
已使用
正在上传
空空如也~
上传中..{{f.progress}}%
处理中..
上传失败,点击重试
等待中...
{{f.name}}
空空如也~
(视频){{r.oname}}
{{selectedResourcesId.indexOf(r.rid) + 1}}
处理中..
处理失败
插入表情
我的表情
共享表情
Emoji
上传
注意事项
最大尺寸100px,超过会被压缩。为保证效果,建议上传前自行处理。
建议上传自己DIY的表情,严禁上传侵权内容。
点击重试等待上传{{s.progress}}%处理中...已上传,正在处理中
空空如也~
处理中...
处理失败
加载中...
草稿箱
加载中...
此处只插入正文,如果要使用草稿中的其余内容,请点击继续创作。
{{fromNow(d.toc)}}
{{getDraftInfo(d)}}
标题:{{d.t}}
内容:{{d.c}}
继续创作
删除插入插入
插入公式
评论控制
加载中...
文号:{{pid}}
加载中...
详情
详情
推送到专栏从专栏移除
设为匿名取消匿名
查看作者
回复
只看作者
加入收藏取消收藏
收藏
取消收藏
折叠回复
置顶取消置顶
评学术分
鼓励
设为精选取消精选
管理提醒
编辑
通过审核
评论控制
退修或删除
历史版本
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}
ID: {{user.uid}}