国内大部分有机化学教科书,在讲到苯分子结构时都会这样讲述:苯分子中6个C-C键是等同的,存在大π键(离域π键或者π电子离域)并不存在单双键交替的情况,凯库勒式实际上是错误的,只是由于历史的原因仍然沿用而已。某些教科书会用分子轨道(MO)理论进一步解释苯分子的π电子离域,6个π电子原子轨道彼此作用形成6个π分子轨道,6个π电子正好填满3个成键轨道,导致苯分子中6个C-C键完全等同,苯分子存在较大的离域能,因此苯环很稳定,容易发生取代反应而不是加成反应,也就是“芳香性”。 确实大部分教科书上都是这样介绍的,中学化学教科书更是强调“苯分子结构决不是单双键交替的环状结构”,教辅资料中的苯分子结构式,以及老师和同学们写苯结构式时,都习惯在正六边形中画一个圆圈表示,难道单双键交替的凯库勒式真的只是因为历史原因才沿用到今天的? 苯容易发生取代反应,不容易发生加成反应,证明了凯库勒式的“错误”,但同样有一些实验证明了凯库勒式的“正确”,只是大部分教材为了简化编写,避免不必要的争论,将这些实验有意无意地忽略了。在这一点上,经典的《基础有机化学》(邢其毅著)教材做得较好,从第一版到第三版,教材中均讲述了苯和邻二甲苯臭氧化实验,而这两个实验正是验证凯库勒式正确性的著名历史性实验。 1904—1905年,就有人进行苯的臭氧化实验,发现反应产物中只有乙二醛,说明臭氧化断键位置确实是在凯库勒

事情很诡异,让我这种工科生难以理解,事情经过是这样:     我老爸是小区门卫,前几天,他说有个陌生外省人士(穿着光鲜)去门卫室找他聊天。我老爸以为他来询问问题的,就聊了起来,对方说他是来附近参加演出,闲着到处逛。然后那个人有一句没一句聊来聊去,然后说给我老爸把脉,把完还说我老爸身体很健康啊。我老爸说当时也很疑惑,因为这人的言语和行为都有点怪怪的。      结果那人走后,几个小时后,被把脉的位置就开始痒,起水泡,几天过去了,症状加重到图中所示。     前两天,聊电话中,我老爸说是可能被人整了,有可能对方会来敲诈,我不以为意,说别想太多,都什么年代了,估计只是过敏而已。然后我老爸说肯定有关,就是把脉的位置起水泡,传染很快,还痒,然后又说,如果对方准备敲诈,几天后肯定会回来。我叫他拍照看看,他说自己不会拍(我当时一直认为他想多了,也就没认真让他找人帮忙拍)     然后下午五点多,我老爸来电话,说不出所料,那个人昨天还真来了,可惜不是我老爸值班,那个人被另一个门卫赶走了。     这个时候我觉得蹊跷,让我老爸拍照看看,他说不会。最后我选择了视频聊天,叫他把摄像头对着痒的位置。然后吓我一跳

多相交错技术是低压大电流电源里面必备的技术之一,不光可以突破单个电感电流容量的限制,而且还能分散热点,更重要的是极大降低了有效值电流还提高了效率。多相交错电源里面每一路pwm都是需要相差一定角度的,比如三路交错就是需要三个相位之间相差120度的信号。本帖忽略匀流问题(实际中必须处理下否则相之间负载不平衡会让负载大的相烧掉)。如果启用了互补输出还可以做到三相交错的互补PWM。 STM32单片机是一种很常见性价比很高的32位单片机,最低端的STM32F0系列也有ADC,众多定时器等外设,于是本帖使用STM32F030K6为例,讲解高速多路交错PWM的产生方式,同样的原理也可以拓展到STM32F1/F3/F4系列和其他系列的单片机里面。在单片机里面有这么一种东西叫做时钟树,描述的是单片机内部每个模块的时钟频率,来源还有可用的分频/倍频选项,STM32F030K6的时钟树如图: 这个图是在STM32 CubeMX里面自动给出的,这个软件很不错,可以用图形界面来生成时钟树以及其他外设的初始化代码,再也不用死坑datasheet啦 哈哈哈(雾 STM32所有定时器的时钟都是接到APB1 Timer Clocks这里的,也就是说所有的定时器都是在同一时刻对C

最近看了美国LIGO的项目测出了引力波很激动啊,这么大的设备测质子直径千分之一的长度变化,据说设备的管道会被抽成真空,真空度小于10的负12次方,比磁控管的真空度还高,以排除分子热运动的影响,人类真是伟大,然后我查了一下它的原理,好像是靠激光干涉来测的,说到光干涉这里就不得不提到经典的杨氏双缝干涉实验了。 杨氏双缝干涉实验高中物理书上就有,大学的物理书上也有,大学的更详细一些有公式的推导过程,我觉得比较遗憾的就是高中没有做过这个实验,大学的时候有没有做过已经记不得了,我感觉是没有做过,好像只做过一个杨氏模量的测定实验。反正最近放假没什么事情做,就想自己复现一下。想了一下托马斯杨那个时代,别说激光了,连电灯都木有,然而人家硬是用蜡烛就完成了这个实验,古人就是厉害啊,大学期间目睹过某些实验室放着价值几百k的仪器生锈,哎不说了,今天我们有半导体激光器,不试试怎么知道呢? 首先先准备激光器,我用的是一个650nm红光半导体激光器,这个我以前用来点过BP,这种激光器很常见 (附件:259179) 然后是比较关键干涉缝的制作,我试过很多种方法,在硬纸板上刻缝,在铁皮上刻缝,要刻出很窄的缝很困难啊,最后还是在网上找到了资料,方法比较简单容易做,材料是刮胡刀片,铜丝,黑色纸板,电工胶布。 1,先用刻刀在纸板上刻出一个方窗 2.在方窗中间拉一根

非线性探测器是一种非常重要的防务装备,用于探测隐藏的半导体(主要是P-N结)。 对于埋藏在墙体内的窃听器、针孔摄像头,家具、大型艺术品中的间谍装置,疑似爆炸装置中的电子引爆电路等,采用传统的X射线检查难以实施,需要相应的无损检测手段来加以探测。非线性结点探测器即用于满足这些场景的检测需求。 下图是一个非线性结点探测器产品(图片来源于网络)。 电子装置几乎必然含有非线性节,通常为PN结。PN结在外部射频激励下,不可避免的会吸收激励信号,同时产生该信号的谐波。通过检测谐波的大小和变化规律,可以被有效的侦测。 严格来看,除真空以外的物质,包括空气,都具有非线性。强的激励可以使任何东西产生谐波,只是这种非线性非常微弱,谐波远远低于真正的非线性结。除了半导体以外,较为常见的强非线性物品是不良的电气结点。常见的例子是墙体里的钢筋接缝、接触不良的电缆接头。但是这些东西通常产生较大的三次谐波,而较少产生二次谐波。相反,在小信号场景下,PN节会显著的产生二次谐波。因此,可以通过二次和三次谐波的比例,排除大多数干扰因素。 研制非线性探测器的挑战,主要来自于设备自身产生的谐波。非线性探测器也是电子装置,而且还非常复杂,内部有大量

一周活跃用户

帖:2 复:12
帖:1 复:15
帖:0 复:7
帖:1 复:7
帖:1 复:6
帖:0 复:7
帖:1 复:4
帖:0 复:3
帖:1 复:0
帖:1 复:3
帖:0 复:2

nkc production server  https://github.com/kccd/nkc.git

科创研究院 (c)2001-2018

蜀ICP备11004945号-2 川公网安备51010802000058号