由于之前自制的三级光电控制的可关断小磁阻炮取得了一些出乎意料的成果(无能量回收情况下,在仅三级,电容组330v电压下7g弹丸初速达到了近50m/s,假设电容组全部放电到0v效率依然达到了9.8%)遂发出此帖向大家介绍一些我走过的弯路和得到的经验。   过去的几个月中,我一直在尝试制作并优化IGBT可关断式磁阻炮的控制电路,取得了不小的成果,我也会在文中附上前几周制作三级小磁阻的过程供大家参考,并分享一些性能优秀的元件。 1.关于可关断式磁阻炮相对于传统无关断的优势(高手可跳过):避免了弹丸飞出线圈后电容组的储能仍被线圈和开关以产热消耗,减少了能量浪费并一定程度上减小了反拉,还可以使电容组有一定余电,这有利于连发。 2.关于高压电容充电器设计的一些问题:在这门炮上我使用了它激推挽式升压,电路是根据 @金坷居士 的逆变器前级稍微修改而成(请各位不要模仿,我会在后面说明原因)。在询问金坷居士本人后我得知这个电路没有电流环,不适合为电容充电,但我依然决定用它来为这门炮的330v 共1620uF的电容组充电,这是第一个设计上的失误。而另一个失误则是出于体积考虑,我没有在高压输出端做任何限流措施,这就相当于两个内阻极小的电压源,一个接近

想做个FUSOR玩玩,计算测试需要连续输出电压140KV以上,输出电流50毫安以上的高压电源,整个进程拖拖拉拉了差不多半年,还卡在高压电源这块。 手上有两对PC40材料的UY30磁芯,磁芯截直径为30mm左右,其它参数如图: (附件:279364) PC40的参数:初始磁导率 2300±25%,据说最高磁饱和为0.39T,理论单个最大支持功率为4.3千瓦。 电源现采用的是12V69A的测试电源搭4管ZVS,ZVS为分体电路,改成带抽头12V驱动,350V供的ZVS比较简单。也有考虑用全桥供电,当然这都是后面的事。 第一步尝试做的高压包,采用的线为0.25mm的三层绝缘线,据介绍击穿电压大于15KV。 高压包架是自己做的透明亚克力材质的。 第一次绕线,根本没有计算过各种数据(实际也不会算),次级线圈绕的有点参差不齐,线圈中部还有两个接头(因为0.25mm的线只有200米,所以两头都用了50米的0.5mm三绝缘线拼接),整个次级线圈共计2074圈,初级为无抽头,共6圈。纯手工绕,工艺非常差。 在加电测试中,击穿距离大概是5-10mm。最大拉孤距离看似在4-6cm。当然到了5cm以后,高压包尖啸个没停。最后,高压包内部被击穿(直接击穿压克力绝缘壳)。 附上照片及小视频。 成品及ZVS外观: (附件:279365) (附件:279366) 被击穿时照片: (附件:279367) #{r=

“一种特殊情况下磁阻式电磁炮的效率极限”提到了一种特殊的加速方式,以及一种神奇的磁场。但是,当时没有对那种神奇的磁场进行详细讨论。本帖将重点介绍那种神奇的磁场在磁阻式电磁炮上的应用。为了提高逼格,将基于这种神奇的磁场的磁阻式加速方案称为 “磁阻式电磁炮的脉波加速方案” ,或简称为“脉波方案”。接下来将首先明确定义脉波方案,并进行粗略介绍;之后将详细介绍它的优势,最后将提出脉波方案的一种低成本的工程实现——矩阵开关,一个可以用20个开关控制100级的方案。     使用脉波方案制作的磁阻式有望接近“一种特殊情况下磁阻式电磁炮的效率极限”中所提到的效率极限。 即5mm弹丸52cm加速至100m/s时,48%的效率极限。或者相似的,50cm加速至200m/s时,31%的效率极限。 PS:本贴共有5000+字,请耐心阅读。本帖包含不少动图,打开本文应该会消耗十几M流量。 脉波加速方案 脉波方案的特点是:通过特定的线圈排布和导通时序,使磁场的函数近似为一个脉波。(关于脉波的定义见贴末附录) 这个特点通常表现为:以磁场中心为参考系,磁场的各种属性(强度、与空间分布)近似恒定不变;磁场与弹丸保持相对静止;磁场中心始终领先弹丸一段固定的距离。 为了近似出一个磁脉波,同时保

磁阻加速器的制作过程很有戏剧性,本人电路知识就是高中物理课堂学到的。最初只是想做一个离子打火机,网上查资料买元件,很简单的电路我都连不上,补了补知识,结果发现ZVS比离子打火机好玩,开始做ZVS,感觉好难,最后还是完工了。晒一下粗糙的做工:(附件:266140) (附件:266139) 做完之后又发现有人用ZVS给电容充电做加速器,于是又补脑,决定自己也做一个。于是很喜欢看(附件:266141) 自己开始买铜线绕线圈、刷绝缘漆(附件:266131) (附件:266128) 304不锈钢管打孔8个(3mm),组装线圈(8个)(附件:266133) 焊装电容450V1000UF8个、可控硅TPS16(7个)、充电线路(高压硅胶线+8个fr207)连接(附件:266137) 组装电容、线圈、加速管(附件:266134)(附件:266126) (附件:266129) 为了使加速器方便移动和布局优化,于是把所有元件固定到一把玩具木仓上了,希望不要被河蟹了,(附件:266132) 加速弹丸为了便宜,直接某宝,4mm*35mm定位销(附件:266138) 一米距离410V试速(附件:266136) 感觉不稳定,5000转/分电机稳定装置(附件:265945) (附件:265947) (附件:265946) 效果不是很理想。由于被领导(家里的领导)禁止做此方面的制作,所以把加速器拆了。这个

论坛建立事故报告制度,要求对于科技爱好活动中的各种事故,不论大小,一经发生,知情的论坛会员均应立即发帖报告,并陈述事故的初步原因分析、导致的后果和处理情况,条件许可时,应发布事故经验教训总结。小事故在相应门类科技爱好的版块下的事故报告帖中发表,中等以上事故报告应同时再发一份到本帖中。 对中等以上事故的定义(概略定义,仅用于主观判断,不作为标准): 符合下列条件中的任何一项,为中等事故: 1、有人轻微伤,或中毒、电晕等,需要进行医学救治,恢复期在一周以上,一月以内的。 2、财产损失1000~10000元(包括间接损失)。 符合下列条件中任何一项,为大事故: 1、除以下各款外,有人轻伤。 2、深2度以上烫伤、化学灼伤面积占体表面积10%以上。 3、电灼伤造成肌肉部分坏死,危害肾等脏器功能,需要住院治疗的。 4、中毒经治疗能基本康复,但不构成残疾,恢复期一月以上;或引起次生疾病,需住院治疗的。 5、触电经他人救助才脱离带电体,或导致心率紊乱(昏迷)但自行复律的。 6、发生过火(受损)面积10平方米以上建筑火灾、化学物质泄漏等次生事件的。 7、财产损失1万~10万元(包括间接损失)。 符合下列条件中的任何一项,为重大事故: 1、有人受伤,最终导致残疾;或有人重伤的。 2、有人触电,经过心肺复苏等抢救得以存活的。 3、中毒导致残

用数字方法实现反馈环路好处很多,比如可以通过串口控制,可以实现自定义的伏安特性曲线……简而言之,可以在不修改硬件的情况下改变电源的特性。 为了降低难度,我选择从最简单的Buck拓扑开始。 (附件:255519) 电压与电流信号由运放送往MCU内置ADC,采集后经过PID算法生成一定占空比的PWM信号,通过场效应管驱动器驱动输出场效应管。 因为这个电源的功率比较大,同时可能经常要工作在恒流模式,所以我没有使用电压模式控制,而是选择用电流模式控制,也就是通过调节占空比控制电感电流,通过调节电流实现控制输出电压,而不是通过调节占空比直接试图控制输出电压。这样我们就可以使用很大的输出电容,可以使用低ESR的输出电容,而不必费尽心思设计补偿网络。 这里电感电流的采集非常关键,直接影响恒流精度。因为工作在连续电流模式的电感的电流波形是有直流偏置的三角波,我用一个带有直流偏置的三角波电压源模拟采样电阻上的压降信号。设采样到纹波信号0.02V,放大21倍,开关频率为50kHz; (附件:255521) (附件:255522) 红线代表原始的电流信号。要想直接采集一个周期内的平均电流(而不使用低通滤波器),就要在电流波形上升段或者下降段的中点采样。如果采样的时机不对,采集到的电流就

nkc production server  https://github.com/kccd/nkc.git

科创研究院 (c)2001-2018

蜀ICP备11004945号-2 川公网安备51010802000058号