浅谈MOSFET短波功放偏压热补偿设计
ehco2016/05/04无线电 IP:贵州
浅谈MOSFET短波功放偏压热补偿设计
BG8NJW


    短波通信系统中,射频功放(下称PA)是不可或缺的单元,承载着高频功率放大的要务。通常,为提高频谱利用率及信息边带的功率分量,短波通信多采用SSB(单边带)调制方式进行通信,这种调制方式属于线性调制(区别于FM调频等非线性调制)。这样就要求射频功放的增益曲线也要按照线性或近似线性的特性来设计。
    在中小功率(小于300W)的短波射频功放单元中,为兼顾放大器效率与线性度,功率管通常采用ClassAB(甲乙类)推挽结构的电路。射频功放一般效率不高,自身热耗散较大,功放管的工作温度变化范围较宽,为保证电路静态工作点的稳定,在要求不是很低的场合,无一例外都对功放管的偏压加入了自动温度补偿措施。
    随着三菱等厂商一系列射频功率双极型晶体管的全线停产,近年的双极型射频功放管BJT逐步被MOSFET取代,BJT逐渐退出历史舞台(例如常用的2SC1971已被RD06HVF1取代)。MOSFET相比BJT具有输入输出阻抗易匹配,管损小,温度特性好等特点。
因此,本帖主要是对基于MOSFET的短波功放的偏压热补偿方案进行探讨。通过查阅网络和相关书籍,不难发现基本上中小功率PA都是依照如下两种模式进行偏压热补偿设计。
一、正温度系数补偿方案
正温补偿.jpg
1

    图1中,推动级和强放级均采用了正温度系数补偿措施。4个功放管的G极偏压均串联了一个二极管DAN202U,该二极管为硅高速开关二极管,同1N4148,1N4001一样,在较大的Ifw(正向电流)范围内,正向压降与结温呈良好的线性负相关。因此常被“移作他用”来充当温度传感器。在电路PCB布局中,通常紧贴功率管的散热面安装。图2DAN202U的正向电流与正向压降的结温曲线簇。
DAN202U.png
2

    可以看出,在相同的正向电流下,温度越高,正向压降越低。因为二极管是串联在偏压回路中的,当温度升高,二极管上的压降减小,势必导致MOS管的偏压Vgs升高,因此该电路叫做正温度系数补偿。
    这里题外提一下,由于MOSFET制程中,金属层与半导体之间的氧化层的物理厚度控制精度不高,造成MOS管在线性区的跨导存在较大离散性,即便是同一批次的产品。所以在要求较高的场合,无一例外的对每一个MOS管提供单独的可调的偏压,以获得良好的Idq(漏极静态电流)对称性。

二、负温度系数补偿方案

负温补偿.jpg
3

    3所示的是另一种偏压补偿设计方案,该方案中,温感二极管1N4001是串接在三端稳压芯片7805的参考电压引脚与地之间。图41N4001的正向电流与正向压降的结温曲线簇。

1N4001.png
4

    同理,当温度升高,1N4001的正向压降降低,使7805的参考点降低,输出电压降低,因此该电路叫做负温度系数补偿电路。采用21N4001串联的原因是提高同等温差下的压降变化量。
    那么问题来了,为什么类似的管子型号,类似的电路结构,为什么会采取截然不同的温度补偿措施?带着问题,我们先以RD16HHF1这个30M/16W/16dBMOS功率管设计一个10W的线性功放示例,来看看标准的正向设计流程中,针对MOS管的热补偿设计应该怎么做。
一、明确电路正常工况下的温度波动范围
    民用产品,一般要求将设计指标设计在器件手册规定的MAXIMUM RATINGS限定值的70%以内,那么对于该MOS管,正常工作温度应该控制在-28℃至﹢105℃内,一般按照-20℃至﹢85℃设计。
二、选取正确的直流静态工作点
    对于输出10W功率的AB类功放结构,选取400mAIdq作为其静态工作点(具体的计算计划另开一贴详细叙述)。
三、查阅功率管的Ids-Vds-Tj曲线簇,确定采取何种补偿方向
    经查RD16HHF1DataSheet,该管的Ids-Vds-Tj曲线簇如图5.
MOS-Tj.png
5


    通过观察图5,可以发现MOSFETRds(on)(漏源导通电阻)温度系数有3个区域,分别是正温度系数区、零温度系数点和负温度系数区,符合微电子理论中对MOSFET导通电阻的描述(具体原理请自行查阅相关资料)。
那么在举例的设计中,Idq=0.4AIdq为静态直流情况下的Ids),落在曲线的负温度系数区,这个时候,对于恒定的Vgs偏压,温度越高,Ids越大。因此需要对Vgs进行热补偿设计来稳定Ids
    从图5红蓝线标识处可以大致得到,为保证Ids恒定为0.4A,当温度从-25升高至+75℃时,偏压Vgs应从4.4V降低到4.2VVgs变化量dVgs0.2V。这时应当采用图3所示电路的负温度系数补偿方案。
    再回头去看一下图41N4148二极管的温度特性,1.85mA正向电流时,温度在150摄氏度范围内变化时,压降变化约为0.28V,应用到设计实例的-25+75℃温区时,压降变化量为0.18V(接近dVgs0.2V),因此图3电路只采用11N4001即可。那么图1的合理性大家就可以自己分析了。
    引申一下,现代较高端的线性功放设计,多采用数控偏压源配合温度传感器来实现温度偏压补偿,这样通过实际器件,实际散热环境的测试模型来实现非常精确的静态工作点稳定。同时可以实现工作点的程控化,例如工作在FM模式的时候可以通过程序瞬间实现负压偏置;也可以在PA高驻波时,瞬间提高偏压使MOS饱和。
    在各大HAM论坛中,对偏压补偿的方式也是众说纷纭,其实完全可以用理论来指导实际。说到这里,相信大家也明白了,对于别人的电路,不要盲目copy,需要具体问题具体分析。不谈静态工作点就乱用补偿方式就是耍流氓。

attachment icon 1N4001.pdf 42.07KB PDF 88次下载 预览

attachment icon DAN202U.pdf 65.56KB PDF 82次下载 预览

attachment icon RD16HHF1.pdf 314.54KB PDF 71次下载 预览
+1  学术分    虎哥    2019/12/10 高技术含量的教程。
来自:电子信息 / 无线电
8
 
已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也
ehco 作者
8年0个月前 IP:贵州
818316
引用 smith:
echo 大神 + 老乡 重出江湖,前排。
大概看懂了是用1N4001这样的二极管当作温敏探头来反馈调节MOS管吧。
我不是HAM,不过对短波CW有点兴趣,因为国内短波CW基本上都是,7.023MHz,最近也尝试用晶体做了个电路,后级的功放...
smith大神好 40米波段的CW功放,可以完全按照D类开关电源来做,250管子完全胜任。效率还异常的高。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
8年0个月前 IP:贵州
818395
引用 hambaby:
公开号 US8130039 B2
发布类型 授权
专利申请号 US 13/223,657
公开日 2012年3月6日
申请日期 2011年9月1日
优先权日 2006年5月17日
缴费状态 已支付
公告号 US8031003,...
呵呵 老兄 美帝这图是不是脱密处理过啊 仔细一看 不对劲啊 不改改没法构成反馈
依靠Q51当二极管用法的话,要求Q51和被偏置管同型号同批次,否则也没啥意义。
还有想请教一下老兄,专利如何保护电路?是对器件型号还是对电路结构进行保护?
163_5252_5db1386ca2e53f8.jpg
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论

想参与大家的讨论?现在就 登录 或者 注册

所属专业
上级专业
同级专业
ehco
老干部 学者 机友 笔友
文章
114
回复
1633
学术分
41
2007/07/11注册,1天19时前活动

撸起袖子加油干!

主体类型:个人
所属领域:无
认证方式:手机号
IP归属地:未同步
文件下载
加载中...
{{errorInfo}}
{{downloadWarning}}
你在 {{downloadTime}} 下载过当前文件。
文件名称:{{resource.defaultFile.name}}
下载次数:{{resource.hits}}
上传用户:{{uploader.username}}
所需积分:{{costScores}},{{holdScores}}下载当前附件免费{{description}}
积分不足,去充值
文件已丢失

当前账号的附件下载数量限制如下:
时段 个数
{{f.startingTime}}点 - {{f.endTime}}点 {{f.fileCount}}
视频暂不能访问,请登录试试
仅供内部学术交流或培训使用,请先保存到本地。本内容不代表科创观点,未经原作者同意,请勿转载。
音频暂不能访问,请登录试试
支持的图片格式:jpg, jpeg, png
插入公式
评论控制
加载中...
文号:{{pid}}
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

加载中...
详情
详情
推送到专栏从专栏移除
设为匿名取消匿名
查看作者
回复
只看作者
加入收藏取消收藏
收藏
取消收藏
折叠回复
置顶取消置顶
评学术分
鼓励
设为精选取消精选
管理提醒
编辑
通过审核
评论控制
退修或删除
历史版本
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}