玩个冷门- 弧次比过1的6P12P VTTC
rb-sama2020/03/17原创 高电压技术 IP:湖北
关键词
VTTC6P12PEL504

楼主在武汉,目前疫情渐渐转好,开始远程办公了。在家呆了两个月,琢磨着发展一下个人爱好。

所以在这两天工作之余,整理了一下元件堆,翻出来两只电子管。

a.png (在国外它叫EL504)

这个电子管很有意思,四元五毛一只,是上个世纪八十年代广泛生产的110度偏转电视里面行脉冲输出用的。

刨除晦涩的意思,可以把它理解为一种类似IRFP460这类的通用开关管,线性度相当的差。

由于其存世量大,廉价,以至于很多人想用它做胆机、功放,无奈它就是被设计于工作在非线性状态。

甚至有人强行猜测改曲线变线性,写帖子恰饭,来为商家造势,都不能改变它的评价,相当滑稽。

-

作为一种类似IRFP460的开关管,难道它除了胆机,就一无是处了吗?

重新看它的参数,里面有很多有趣的细节,它有6.3V 1.38A的灯丝电流,

6P12P 的另一个特性就是高跨导18-28mA/V,这个指标也很有意思。

mA/V这个单位,实际上是mA(Ia)/V(Ug),电子管也是有内阻的,Ra,变化率的单位就是Ua/Ug。

-

所以综上可以看出,6P12P是那种很灵敏,电流很大的管子。

他被我选中用来做VTTC,但是要避免问题就是,任何小的尖峰和布线误差会让6P12P自激震荡。

而且是非常容易震荡,

c.png

看图片里这种80年生产的电子管,经过了敏感年代,完全没有老式电子管精致的感觉。

取而代之的是歪东扭西的云母(纸?)支架,配合歪扭的屏极引线,已经初有后期山寨年代产品的感觉。

我有十来只这种管子,居然没有相同的两只,粗制滥造可见一斑。

一旦发生自激震荡,表现为的就是在管内引脚产生一团金色电弧,这是由于在内部电感上形成驻波点所致。

-

越简单的效果越好,我就选了这个电路。

d.jpg

这是远古时代,一个东欧人网站的电路图,很多人都做这个电路,都很普通。

我就不信邪

-

说干就干

上大前年玩QCW DIY剩下的自动绕线机的半成品,绕他个1100匝,0.12mm线径。

e.jpg

没有初级线圈支架,外面也出不去,顶环直接3D打印一个,起均压作用。

g.jpg

,就找一个坚果包装盒绕上线圈,找到各种零件组一堆TC

f.png

线圈参数是4-50圈,电容是470pF的雷达电容,大圆柱是个滤波电容。

反馈线圈2-30圈,偏压电阻是10K,20nF*


[修改于 4年7个月前 - 2020/03/20 01:36:05]

来自:电气工程 / 高电压技术动手实践:实验报导
26
 
14
已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也
谈笑风生又一年
4年7个月前 IP:江西
875440

lz加油!坐等更新。希望武汉这座城市也能快点好起来,加油!

引用
评论(1)
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
GiroPetrenko
4年7个月前 IP:江苏
875442

貌似从年代越靠后开始,电子管越来越缩水。手上有几只60年代版本和70年代末出产的各类收信-放大管,后期的装配质量十分惨烈。除了特别的FU,5Z9P之类。

引用
评论
1
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
931867939
4年7个月前 IP:江西
875446

能发下效果图吗?6p12p的屏耗不高,是有并管吗?用过6p13p做的自激,电弧好小,但频率貌似高的有点过分了

IMG_20191109_221513.jpg

效果,放电针用燃气灶放电针,涂了点硝酸钍。

012e0a5a3c64e35d33cbe64ac5c6e1e0.jpg

电路图.管子换了6p13p,本来想用lz的图,但电容使我放弃了,lz可有代替方案?

IMG_20200215_191627.jpg

IMG_20200215_191707.jpg

频率计最高50MHz,已经超过了,只能手算,(我算的是80MHz,小白一枚,算错了别见怪),对手机的收音机干扰不是很大,3左右只是90MHz以下干扰比较严重,对WIFI无影响,后面不知道怎么加音频就拆掉了,请问lz知道怎么加音频吗?😀

引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
rb-sama作者
4年7个月前 修改于 4年7个月前 IP:湖北
875536

回复LSS:是的,会有缩水的情况,但是其实核心工艺也增强了很多,代表性的就是后期的氧化物阴极效率。

回复LS:效果图后面会有,6P13是个很好的管子,和6P12不同,它耐压比较高,放射能力是一样的。

供电电压是几V?然后RFC扼流圈和主谐振回路参数是多少?这个线路我前些年做过

可以分析出来原因,因为阻抗有时候往往就是电弧效果的表现,

加音频很简单,看我视频的效果,6P12P做的,纯电子管线路,前级6J2调制帘栅极,五年前的作品

XXXXXXXXXXXXXXXXXXX/v_show/id_XMTM5MTc1NjM2NA==.html

具体原理图是我设计的,用电子管曲线匹配帘栅极的阻抗,找到一个最大变化线

因为那个时候比较中二,追求完全的胆味,所以完全没用运放,用运放就可以阴极调制,声音更大。

h.png


引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
rb-sama作者
4年7个月前 修改于 4年7个月前 IP:湖北
875539
VTTC精髓之一-自偏压电容

言归正传,继续连载

-

注意到一楼最后,我有一个打*的一段。

其实这是我第一次做真正意义上的VTTC,里面提到了这个栅极反馈电阻,

我查了好久,从来没有人真正在中文爱好者社区真正解释过这个RC的含义,其实它非常重要

可以说是精髓之所在,今天我就来揭开它的面纱:

i.png

还是主楼那张原理图,很多人都习惯把电子管当作MOS管来看待,从它激角度是没错的。

但是电子管其实非常精密,里面有很大的学问,微观尺度影响它性能的方方面面

电子渡越、二次电子发射、电子云储备等问题都在影响它偏离一个理想压控元件。

当然在低频的情况下,我们不需要细致到这种程度分析,

-

但是我们可以知道的是,由于热电子发射的原理,阴极会产生电子发射的现象

但是由于电子这时候是没有牵引的,这时的电子被称作自由电子,

而当线路开始正常震荡的时候,由于主回路的选频作用,会产生谐振,此时FB也会感应出正弦电压。

而如果仅仅把电子管栅极当作电容分析,此时1n与68K并联,不考虑68p电容

回路感抗为w(mLsed+Lfb)+R(R+1/wC)/wC+1/wCg

而分压仅仅为(1/wCg)/(w(mLsed+Lfb)+R(R+1/wC)/wC+1/wCg)

从交流分量上看,分子分母都含w,就是简单和频率相关的分压关系。

而从另一个角度,考虑电子云的存在,大量聚集的电子云,会被栅极吸引,正半周期飞向栅极

而负半周期,会对电流通过形成阻力,

这样一来,分析就会完全不同,此时栅极可以近似看作为一个二极管,对正弦电压整流。

在1nF电容C上,就会不可避免的产生一个左负右正的电动势,以抵消二极管的电子云带来的影响。

这个电压在稳态后,会与上面计算出的分压叠加,

E+(1/wCg)/(w(mLsec+Lfb)+R(R+1/wC)/wC+1/wCg)

这才是最终情况下,栅极上的电压表达式。

可以看出,栅极反馈电压有几个参数影响:

偏压E

w频率

Cg栅容

R栅阻

Lfb反馈电感

Lsec次级反射电感

m次级耦合度

这就是为什么VTTC难调,不容易成功的原因,往往就是无法权衡这几个参数才会导致偏压不正确。

j.png (反着看绿色波形就是栅极波形)

-

重新看待电子管的特性,电子管由于0压情况下,电子云依然存在

所以会存在静态阳流,所以电子管是负压截止的,必须在栅极给一个截止电压。

而如果没有这个RC,那么正弦波必然会在电子管的正区间摆动,永远处于放大状态,也就是俗称的AB类放大器。

而加上这个RC,自动产生的负偏压,就会让电子管在部分区间截止。

这时候,VTTC工作在高效的C类放大条件下,效率可高达78.5%,当然通过处理理论效率可高达100%(暂不讨论)

这样就可以实现发挥电子管的最大效能。

-

以上就是VTTC的秘密所在,也是很多人做不好的关键所在。

其中RC组合的选择,需要遵循以上列出公式,效果能否做到最好,就看公式匹配的如何。

引用
评论
7
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
931867939
4年7个月前 IP:江西
875604
引用rb-sama发表于4楼的内容
回复LSS:是的,会有缩水的情况,但是其实核心工艺也增强了很多,代表性的就是后期的氧化物阴极效率。回...

电压约500V,扼流圈和谐振圈分别是用1.5mm漆包线在直径1.5cm2.5cm管子上绕10圈(空心线圈,电感量不知道),反馈用3个10nf电容串联,试过不用反馈电容,电路无异常,由于没有6p13p的管座,整个电路用鳄鱼夹连接。另外用FU50试过能起振,但基本没有电弧。

吐槽一下,fu50的玻璃壳真厚实!看做工都不像民用的😂

引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
rb-sama作者
4年7个月前 IP:湖北
875757
引用931867939发表于6楼的内容
电压约500V,扼流圈和谐振圈分别是用1.5mm漆包线在直径1.5cm2.5cm管子上绕10圈(空心...

😂可以用模拟软件模拟一下大致的电感量,我记得论坛有这个工具。

那个线路你仔细一看,其实是一个空气电容反馈的电容三点振荡器,反馈回路形成电容对栅极震荡。

这个电容大概是XXXX级的,所以你无论怎么换10nF反馈电容,都基本上影响不大的。

-

主要的调节就是调那个反馈环的大小,对电弧效率影响很大。

因为原电路是ry-50,这个偏压和6P13P还不太一样,如果用6P12P做,用小电阻给一个自偏压。

类似胆机攻放那样的,220uF就可以很稳定了,效果至少提升一个层次。

我用6P12P做如果不考虑音频调制,可以做到图中2倍大小长度的金黄色火焰。


ps:FU50这个管子,国内很多都是坦克电台上淘汰下来冒充新管,而且容易漏气要小心甄别

引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
rb-sama作者
4年7个月前 修改于 4年7个月前 IP:湖北
875790
VTTC精髓之二-灭弧部分

刚才也有人提到6P12P的屏耗只有12W,这是什么概念呢。

就是假设加120V电压上去,100mA的电流,继续加大就会减少6P12P寿命。

这个指标放在今天,还比不上13001三极管的参数。

但是电子管有个好处,就是可以用比较高的电压,而半导体器件不可以,一旦超压迅速损坏。

所以1200V 100mA和120V 1A效果是一样的,

而特斯拉线圈一条电弧的形成只要ms级别,所以就允许脉冲方式让电子管工作,减少屏耗。 

所以让VTTC脉冲方式工作,有利于保护电子管的正常运行,所以可以设计以下电路。

k.png

用一个50UD作为开关管,断开红X的地方,这样就可以实现低电平电位地平面开关。

单片机的信号是一个点焊机控制板改装的,能产生可控的脉冲。 主控单片机是STM32F030

799ea59792e227c4d583cf9afcd3c328.mp4 点击下载

50HZ正弦波的一半就是10ms,也是半波整流的一次有效周期。

重复频率大概是1HZ,ontime是10mS,这样就可以刚刚好卡住一次上升的正弦波。

可以看到视频里面“啪啪啪哒哒哒塔塔塔”的声音,这是因为开通周期并不能完全契合正弦波有效周期。

导致有效导通周期并不一定,而是呈现不规则变化,而这样就会导致电弧不稳定。

-

接下来我解决这个问题

L.png

蓝色波形就是之前随机定频灭弧的效果,可以看到是会造成锐利的开通和关断。并且有效值不确定。

而如果实现红色波形区间导通,就可以做到跟随每个波开通而开通,

并且还是零电压,零电流开通,很小规格的IGBT就可以实现对VTTC的开通和关闭,发热小,工作稳定。

N.jpg

电路非常简单,比起用LM741放大整流,送入NE555的单稳态触发器的老方法。

从接近四五十个元件,变成了只要一对二极管和单片机,因为太过于简单,就不画电路图。

原理:正弦波从市电取电,进入钳位二极管,钳位二极管送入单片机触发中断反复更新标识位,20ms一次。

而灭弧的频率一般是远远低于50HZ的,就可以按照正常的灭弧方式开关输出,

并且查询标识位是否使能,单片机代码开源如下:

if(!wk_st);;//HAL_PWR_EnterSTOPMode(PWR_MAINREGULATOR_ON,PWR_STOPENTRY_WFI);
HAL_GPIO_WritePin(EN1_GPIO_Port,EN1_Pin,GPIO_PIN_SET);//enable 12V vol rail
HAL_Delay(200);
if(wk_st)
    {
        HAL_NVIC_EnableIRQ(EXTI2_3_IRQn);
        allowedge=ENABLE;
    }

HAL_Delay(100);//avoid repetion trig erro
allowedge=DISABLE;
HAL_GPIO_WritePin(EN1_GPIO_Port,EN1_Pin,GPIO_PIN_RESET);//enable 12V vol rail
HAL_Delay(300);
-EXIT CALLBACK-
else if(GPIO_Pin==CHAR_Pin)
    {

	if(allowedge)
     {
        HAL_TIM_PWM_Start(&htim14,TIM_CHANNEL_1);		
        HAL_GPIO_WritePin(PULSE_GPIO_Port,PULSE_Pin,GPIO_PIN_SET);
        HAL_Delay(ontime);
        HAL_GPIO_WritePin(PULSE_GPIO_Port,PULSE_Pin,GPIO_PIN_RESET);
        HAL_TIM_PWM_Stop(&htim14,TIM_CHANNEL_1);	
        allowedge=DISABLE;
        HAL_NVIC_DisableIRQ(EXTI2_3_IRQn);
      }
    }

由于48Mhz的高效率处理,库函数即使一条指令运行十几次,也能做到us级别的处理效率,对灭弧来说精度高3个数量级。

所以能够很好的实现以上红色波形的跟随,实际工作的过程中,可以做到微小的发热和更高的耐压。


61ddb325b4dfc7885d3c417ba47e0648.mp4 点击下载

可以看到,效果是相当立竿见影的,

电弧声音从清脆变成了沉闷的“pongpong”,这是因为没有高频成分所致,都是50HZ基波调制。

由于从0开始的功率上升,可以实现类似QCWDRSSTC的剑型电弧上升效果

XXXXXXXXXXXXXXXXXXXXXXXX/t/80477像这个帖子一样。

电弧长度增加的同时,电网的正弦波自然叠加在电子管上,就可以实现10mS级别的QCW灭弧。

它可以仅关乎于普通交流变压器功率大小,省去了纷繁复杂的BUCK等电压调制结构,可谓是一举两得。

-

这种灭弧就是我想说的,VTTC的精髓之二,此技术能让电弧非常长,能量集中释放。

对于某些喜欢简单、粗暴的爱好者来说,越过这道坎,就变成了谁变压器大,谁电弧就大的模式,

投入产出比相当线性,暴力美学满分。

引用
评论(5)
7
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
tetranirate
4年7个月前 IP:贵州
876005

nb,请问可以把均压环的3d文件发出来吗?

引用
评论
1
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
rb-sama作者
4年7个月前 IP:湖北
876020
引用tetranirate发表于9楼的内容
nb,请问可以把均压环的3d文件发出来吗?

M.png

attachment icon topriod.stl 364.44KB STL 72次下载

可以,STL直接丢进3D打印机,最低精度大概3小时打好

引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
rb-sama作者
4年7个月前 IP:湖北
876025
VTTC精髓之三-阻抗的匹配分析

确定了以上原理之后,就明白了VTTC做好的基本方法,和正向设计思路。

接下来从工程角度上看,就剩下加电压这个过程了,

欧姆定律告诉我们,电压越大功率越大,但是这个大在特定系统中是有极限的。

决定他的就是线圈输入阻抗Z

-

在特斯拉线圈爱好者领域里,有个非常常见的误解,就是把Zsurge当成是ZLoad

这个问题不仅在国内社群常见,国外社群亦是如此

Zsurge是啥,是L/C开方成正比的指标,这个指标是有量纲的,单位是欧姆

但是常见的是,串联谐振阻抗输入阻抗为0,并联谐振阻抗输入阻抗为∞,这种情况如何估算阻抗。

初级线圈是L1,次级线圈是L3,L1和L3的耦合度是K,

假设初级线圈电流是I1,耦合度是M,自然而然作为松耦合变压器,就会折算阻抗到初级线圈。

而次级线圈的阻抗是电弧,电弧在电路中是一种非常有趣的负载:


电弧类似于电容的介质损耗,所以可以认为是并联到次级线圈的电阻,同样电弧本身存在自容。

那么就可以看作同样存在串联到地的电阻,

主流理论上一般会把电弧看作一段有损开路传输线,均匀的串联电阻,并联电容。

而由于次级线圈的电感量相比于电弧太大了,所以不考虑它的电感特性。

所以可以看作是一个集总参数的RC,R和C都随着电弧的增加分别减少和增加。

而实际上,可以描述为N*R+J1/wC*N这样的简化表达式

O.png

扯得有点远,但是必须讲,理解这一点之后。

就能得出松耦合变压器的阻抗计算公式,Zpri=(w*M)^2/Zspark=(w*M)^2/(N*R+J1/wC*N)

以上集总公式是粗糙、不准确的,但是能够反映出趋势

可以看到,初级线圈输入阻抗近似于w的三次方成正比,与耦合系数的平方成正比。

与电弧长度成反比,

有些初中、高中的同学会有疑问,特斯拉线圈的变压器特性到哪去了?

很简单,M=K*sqrt(L1L2),K是耦合度,M是耦合系数,

我们分开K和sqrt(L1L2)两个因子看待问题,K一般越小,M就越小,而如果M相对较大。

两个电感线圈的几何平均值就会越小,这意味L1或者L2中任意一个值小,M就会大。

而这个隐藏规律就是松耦合变压器的变比,也就是我们直觉上的匝比N,进一步验证表达式的有效。


只需要知道关键点就是,初级阻抗和频率、电弧长度、耦合系数、初次级线圈电感量相关的值。

而且是一个动态变化的值,不能傻乎乎的认为,仅仅电感大,电容小阻抗就大(那只是Zsurge)


当理解到这个程度之后,就回到初中学的,如何在有内阻的电源上获得最大的输出功率。

结论是Zs=ZL,而VTTC的Zs是什么?

不谈HFSSTC的扼流圈RFC模式,RFC要用电流源联立分析,相对一楼电路图的电路。

Zs就是电子管的内阻,注意大部分真空管书籍上的动态内阻计算方法是错误的(这里有个大坑、不展开。写不完)

按照动态内阻去算,6P12P根本做不出长度2-30cm的电弧。


而上面的两个内容,已经清楚的告诉读者怎么去计算匹配了,我是用纸算的,可以配合仪器设备测算。

具体的过程同样不展开,因为具体情况具体分析。


-

至此阻抗匹配的方法,分析完毕。需注意,以上并没有把初级电容考虑进去,所以不能引申到其他TC上。

VTTC的三板斧最终完成,意味着它在我眼里,任何变换都是富有规律的,正向设计可以顺利进行。

引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
rb-sama作者
4年7个月前 IP:湖北
876027
效果展示,电子管三联测

三个电子管的测试视频链接如下:

XXXXXXXXXXXXXXXXXXXXXXXX/video/av97462928/ 小型VTTC电子管特斯拉线圈三联测

吐个槽:youku越来越慢,感觉可能要挂了,相比b站打开视频快多了

-

首先就是6P12P了,下图为测试效果,10ms*3,50% duty,电弧长度约为2-30cm。

P.jpg

可以看到6P12P表现得相当平静,

但是谁知道我烧了多少这个管子,哈哈哈哈,6P12P的跨导最大28mA/V可不是闹着玩的。

其中如果发现升高电压的时候,在管内形成打火,不要盲目的认为是耐压不够。

而要考虑是管子自己在比较高的频率上产生了寄生振荡,寄生振荡会在管子内部形成金色电弧。

所谓只要超不死就往死里超,虽然供电电压才不到2KV,但是谐振出来电压很高。

6P12P原本1000个小时的使用寿命,被这样玩,就只剩下10小时了= =。

-

下一个选手是FU19,这个管子在国外的型号是QQE06/40,这管子被某些商家吹成军用指定放大管,

其实内阻相当的大,两对内部的管子并联输出,总共可以达到80W,确实是传输线振荡器线路的专用管。

这种管子类似FU29、FM30等,可以在推挽形式的里切尔振荡器用,而且工作频率相当高。

而用在VTTC里,需要非常强的驱动能力,才可以完善的推动,而且工作电压很高才行。

R.jpg

这样玩的下场是什么?

T.jpg

每一次放电都会在阳极上看到星星点点的火光,可能是二次电子放射在稀薄的管内空气中产生了电离。

U.jpg

最后阴极和栅极发生了一次打火,这是正儿八经的超功率使用,直接把表面的氧化物打掉了一块下来。

这也是二手电子管不要随便买的原因,因为你不知道她曾经经历过多少次违规操作的蹂躏。。。

-

最后的选手是FU50,这个管子也是坦克上用的军用放大管,跨导不高,需要仔细调节反馈线圈。

在VTTC里也有栅极谐振的说法,调节方法就各显神通了。

S.jpg

FU50工作的时候,可以看右下角,管子内部都剧烈的放射蓝光,这个蓝光就是可见的电子束。

虽然已经用抑制栅接地的方法屏蔽了,但是由于VTTC的阻抗匹配的非常好,

次级的高级反射回来,让FU50严重超压,电子束从屏极的空隙溢出,电离了稀薄空气。

反过来看,也说明这类电子管真空度不高,也不知道是出厂就这样还是储存时间长了,我的FU50好几个都是蓝光。

-

这个蓝光说实话也引起了我的质疑,

为什么FU50非泄露的部分,也就是屏极的外面,也有蓝色亮光,理论上电子不存在对正电位屏极的穿透性。

因为由于钳位的作用,电子都会被屏极大量吸收。我怀疑到X射线的头上去了。

只能说FU50这种管子,存世量大,良莠不齐,寿命不长,被人吹成小300B,其实真空度不高。


所以实测之下见真章,吹的最好的不见得是最好的,极限情况下才能反映出电子管的素质。

而其实用中小型电子管,经过合理的设计匹配、精细的控制设计,一样能做出很多类似FU33这类大型电子管的弧长。

说明了在VTTC设计的时候,也可以玩的很有意思,


理论上一节IRFP460在匹配合理的情况下,可以随便完爆6P12P

但是我觉得把单片机这种21世纪IC技术的结晶,和电子管这种人类大规模应用最早的有源电子器件结合,

本身就是种很浪漫的事情,电子管虽然在很多场合已经不适合用作商品,

但是玩嘛,其实就是玩个情怀,没有孰优孰劣。😁

引用
评论
3
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
tetranirate
4年7个月前 IP:贵州
876035

sticker B站关注了


引用
评论
1
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
rb-sama作者
4年7个月前 IP:湖北
876044
引用tetranirate发表于13楼的内容
B站关注了

回复的都已互关😁

引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
rb-sama作者
4年7个月前 IP:湖北
876068

应管理员要求,为了保证帖子完整性,把视频上传到论坛。

6P12P


6P12P.mp4 点击下载

FU19

FU19.mp4 点击下载

FU50

FU50.mp4 点击下载


引用
评论
2
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
Lihua
4年7个月前 IP:广东
876135

同,已关注,期待更好的作品!

引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
永恒的澪
4年7个月前 IP:辽宁
876353

感觉这个脉冲频率不是很快,估计再快点就只有几十分钟的寿命了吧 sticker , 小问一下下,寄生振荡导致的内打火怎么解决,要不然只能看着管子挂掉

电子管去推线圈确实很少见的,也比较麻烦,支持一下。

引用
评论
1
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
rb-sama作者
4年7个月前 IP:湖北
876377
引用永恒的澪发表于17楼的内容
感觉这个脉冲频率不是很快,估计再快点就只有几十分钟的寿命了吧 , 小问一下下,寄生振荡导致的内打火怎...

那必须的,大部分情况下性能和寿命基本可以互换。 sticker 这台VTTC我开过CW,后果是2s左右直接烧融。


寄生振荡灭杀的方法其实有很多,

由于电子管的寄生振荡也是基于电子管放大的基础上产生的,所以也可以认为是电路的另一个工作点。

产生振荡相位和反馈幅度缺一不可,所以第一种是相位法,第二种是衰减法,

前者是扼杀寄生振荡产生的条件,后者是扼杀寄生振荡的幅度。


内打火一旦产生,在VTTC这种高电压、强电流、大储能环境下,几乎都是栅极或者阴极被打掉一块。

没有什么挽留的余地,当然只发生一两次打火,也就损失2-5%的性能,影响倒也不大。

引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
彼岸 花开
4年7个月前 IP:江西
876469
引用rb-sama发表于8楼的内容
刚才也有人提到6P12P的屏耗只有12W,这是什么概念呢。就是假设加120V电压上去,100mA的电...

工业电子管感应加热用自偏压(阴极串联RC并联回路),但自偏压在大电流条件下会有很强的负反馈,这就不适合VTTC的工作环境了。单独绕组供电强负压又难以实现自激。为此只有在VTTC自激启动后加入栅负压,负电压正极串联电阻负极串联晶体管后与反馈绕组并联,驱动信号可以用灭弧信号延迟后驱动晶体管。(栅负压可以用灯丝绕组倍压后提供)

+0.5
科创币
rb-sama
2020-03-27
不错
引用
评论
2
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
永恒的澪
4年7个月前 IP:辽宁
876531
引用rb-sama发表于18楼的内容
那必须的,大部分情况下性能和寿命基本可以互换。这台VTTC我开过CW,后果是2s左右直接烧融。寄生振...

可以可以,大功率的话,还是电子管抗造一点,虽然寿命短,质量参差不齐,但是不像晶体管如果是原件内部因素,导致无法挽救的整体耗损,说实话,我倒挺想看看频率和电压上来,管子报废时的火花四射的效果{嘿嘿嘿,一脸坏笑} sticker sticker sticker

引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
rb-sama作者
4年7个月前 IP:湖北
876538

说的不错,这种方法在大功率电子管感应加热中很常见。

自偏压在断续工作的时候,并不是特别适合,因为需要建立时间,往往感应加热的时候就体会不到

而VTTC这种效应很明显,所以理想的情况是可控的输入负压,这个外加电路一定程度上可以控制工作。


稳态工作的感应加热,还能通过调感、斩波手段等控制功率和调谐,

而VTTC更加要考虑瞬态情况,你看2KV为什么IGBT还能正常工作,就是因为我用负压控制了栅极。 sticker


换一句话说,如果觉得这种方法麻烦,可以考虑主回路中建立偏压,

往往速度快,效果好,当然也是有负面效果的,那就是会给回路带来一定的能量损耗。

引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
rb-sama作者
4年7个月前 IP:湖北
876539
引用永恒的澪发表于20楼的内容
可以可以,大功率的话,还是电子管抗造一点,虽然寿命短,质量参差不齐,但是不像晶体管如果是原件内部因素...

不给你看,烧一次性能下降几个百分点。 sticker 真空管确实耐艹,感觉和晶体管的耐用特性是反的


其实真空管理论上是不可能击穿的,但是由于不存在绝对的真空,场强足够大的时候就会发生场致粒子发射。

所以这种电弧都是金黄色的,如果管内真空度不够,就会发生赤橙黄绿青蓝紫各种电弧。

你可以脑补一下。

引用
评论(2)
1
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
永恒的澪
4年7个月前 IP:辽宁
876600
引用rb-sama发表于22楼的内容
不给你看,烧一次性能下降几个百分点。真空管确实耐艹,感觉和晶体管的耐用特性是反的其实真空管理论上是不...

优了个秀 sticker

引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
GloomyGhost
4年6个月前 IP:云南
877803

1586153834904.jpeg

码了 sticker

引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
tetranirate
4年6个月前 IP:贵州
879462

lz,请问6p13p可以吗?因为我刚从我爷爷的元器件盒里找到六七个。顺便纠正个错误,6p12p在国外叫pl504

引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
rb-sama作者
4年6个月前 IP:湖北
879534
引用tetranirate发表于25楼的内容
lz,请问6p13p可以吗?因为我刚从我爷爷的元器件盒里找到六七个。顺便纠正个错误,6p12p在国外...

6P13P供电电压更高些,

当然有EL504,你去查一查,没有错的

引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论

想参与大家的讨论?现在就 登录 或者 注册

所属专业
所属分类
上级专业
同级专业
rb-sama
高压局 进士 老干部 学者 机友 笔友
文章
53
回复
1717
学术分
5
2010/05/02注册,16天23时前活动

曾是化学爱好者转到火箭爱好者最后变成电子爱好者的科创爱好者。

主体类型:个人
所属领域:无
认证方式:手机号
IP归属地:未同步
文件下载
加载中...
{{errorInfo}}
{{downloadWarning}}
你在 {{downloadTime}} 下载过当前文件。
文件名称:{{resource.defaultFile.name}}
下载次数:{{resource.hits}}
上传用户:{{uploader.username}}
所需积分:{{costScores}},{{holdScores}}下载当前附件免费{{description}}
积分不足,去充值
文件已丢失

当前账号的附件下载数量限制如下:
时段 个数
{{f.startingTime}}点 - {{f.endTime}}点 {{f.fileCount}}
视频暂不能访问,请登录试试
仅供内部学术交流或培训使用,请先保存到本地。本内容不代表科创观点,未经原作者同意,请勿转载。
音频暂不能访问,请登录试试
支持的图片格式:jpg, jpeg, png
插入公式
评论控制
加载中...
文号:{{pid}}
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

加载中...
详情
详情
推送到专栏从专栏移除
设为匿名取消匿名
查看作者
回复
只看作者
加入收藏取消收藏
收藏
取消收藏
折叠回复
置顶取消置顶
评学术分
鼓励
设为精选取消精选
管理提醒
编辑
通过审核
评论控制
退修或删除
历史版本
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}