讲完这么多,聪明的同学已经看出让人工智能靠近人脑所面临的几大问题了。
1. 用计算机模拟10亿个神经元的活动非常困难。(训练困难)
2. 没有办法把一个人几十年的生活过程记录下来用做训练样例;即便记录下来,产生的人工智能也仅仅具有这个人的思考能力而已。(优质样例获取困难)
实际上,人类今天所具有的各种求生本能,以及高级思考能力,是数十万年来靠无数代的变异和自然选择淘汰得到的。这个过程很像机器蚯蚓的训练过程:不合格的蚯蚓只有死路一条,留下的自然是合格的。这意味着具有人类思考能力的人工智能,离我们还比较遥远。不过幸运的是,在人工智能的应用过程中,往往并不需要人类的所有本能和所有思考能力,而往往只需要人类的非常小的某一部分神经所实现的能力(例如图像辨识和语言组织能力)。也就是说,实用的人工智能,其能力介于传统计算机和人类之间:既可以像人类那样通过经验解决一些规则和原理不明确的问题,同时又具有计算机的速度和准确度优势。在未来的十五到三十年,这样的人工智能会取代大量的知识性、经验性但非创造性的工作,比如代替网友去淘宝刷好评,比如代替公安翻看视频监控(这个已经实现了,现在可以自动识别套牌),比如代替作者和读者交流文学作品(韩寒很需要)。
1. 用计算机模拟10亿个神经元的活动非常困难。(训练困难)
2. 没有办法把一个人几十年的生活过程记录下来用做训练样例;即便记录下来,产生的人工智能也仅仅具有这个人的思考能力而已。(优质样例获取困难)
实际上,人类今天所具有的各种求生本能,以及高级思考能力,是数十万年来靠无数代的变异和自然选择淘汰得到的。这个过程很像机器蚯蚓的训练过程:不合格的蚯蚓只有死路一条,留下的自然是合格的。这意味着具有人类思考能力的人工智能,离我们还比较遥远。不过幸运的是,在人工智能的应用过程中,往往并不需要人类的所有本能和所有思考能力,而往往只需要人类的非常小的某一部分神经所实现的能力(例如图像辨识和语言组织能力)。也就是说,实用的人工智能,其能力介于传统计算机和人类之间:既可以像人类那样通过经验解决一些规则和原理不明确的问题,同时又具有计算机的速度和准确度优势。在未来的十五到三十年,这样的人工智能会取代大量的知识性、经验性但非创造性的工作,比如代替网友去淘宝刷好评,比如代替公安翻看视频监控(这个已经实现了,现在可以自动识别套牌),比如代替作者和读者交流文学作品(韩寒很需要)。
200字以内,仅用于支线交流,主线讨论请采用回复功能。