磁阻式电磁炮的最优加速度分配

这篇帖子要解决的问题通俗的讲就是,我是把更多电容放在前面效率高,还是放在后面效率高。

首先把问题变成这个形式:对于一个磁阻式电磁炮,已知弹丸初速为v0,出速为v1(v1>v0)。总加速距离为x1(x1>0)。求如何分配各级的加速度,能使效率最高。

引入一个前提条件:整个系统的电阻损耗功率Pr和加速度a的平方成正比,且与其它变量(比如弹丸正在哪一级的哪个位置)无关,即$P_{r}=k\ a^{2}$

这个前提条件对应的实际情况大概是:弹丸始终在磁饱和状态下;分级足够精细,各级紧密相邻,且各级均带关断与能量回收。

结论是:若加速度$a=(C_{3}\ x+C_{4})^{\frac{1}{3}}$,则效率可能最高。其中C3和C4是和v0,v1,x1有关的常数。

求解过程如下:

以位移为零的时刻为时间起点,即$t|_{x=0}=0$,设位移为x1时,时间为t1(t1不是已知量)。设电阻损耗的总能量为$E_{r}$。则此问题可以描述为如下形式:

在满足固定边界条件$v|_{x=0}=v_{0},\ v|_{x=x_{1}}=v_{1}$的情况下,求函数v(x),使泛函$E_{r}[v(x)]=k\ \int_{0}^{t_{1}} a^{2}\mathrm{d}t$取极小值。

∵$v={\mathrm{d}x}/{\mathrm{d}t},\ a={\mathrm{d}v}/{\mathrm{d}t}$

∴$\mathrm{d}t={\mathrm{d}x}/{v},\ a=v\cdot {\mathrm{d}v}/{\mathrm{d}x}=v\cdot v^{\prime},\  (v^{\prime}={\mathrm{d}v}/{\mathrm{d}x})$

∴$E_{r}[v(x)]=k\int_{0}^{x_{1}}v{\cdot} v^{\prime2}\mathrm{d}x$

设$ G(x,v,v^{\prime})=v\cdot v^{\prime2} $

对于物理可实现的系统,$G(x,v,v^{\prime})$拥有连续的二阶偏导数

∴由欧拉—拉格朗日方程可知,Er取极值的必要条件是

$$G_{v}-\frac{\mathrm{d}}{\mathrm{d}x}G_{v^{\prime}}=0$$

$$v^{\prime2}+2v{\cdot} v^{\prime\prime}=0$$

这是一个可降阶的二阶微分方程,可以求出

$$v^{\prime}=C_{0}v^{-\frac{1}{2}}$$

进而求出

$$v=(C_{1}x+C_{2})^{\frac{2}{3}}$$

代入边界条件可以求出C1,C2的值,求出的结果形式上比较复杂 ,mathematica给出的结果是这样的,里面可能有些解不符实际需要舍去

c1c2.jpg

求出v(x)后,可以很方便的求出加速度与位置的关系,即a(x)

$$a(x)=\frac{2}{3}C_{1}(C_{1}x+C_{2})^{\frac{1}{3}}=(C_{3}\ x+C_{4})^{\frac{1}{3}}$$

对于常见的初始速度为0的情况,易知C2=0,所以对于这种情况有

$$a=C_{5}\ x^{\frac{1}{3}}$$

所以初速为0时,若加速度与位置的三分之一次方成正比,则可能得到最高的效率。

至此求解完毕

然后说点闲话。记得我之前曾经发过一篇帖子说效率最高的是匀加速,当时没有发解法(当时本来是打算把另一个问题解决之后一起发出来的,后来发现另一个问题解不动……)结果前两天突然发现,我把当时的解法给忘了……然后又翻了一遍书重做了一遍,发现当时的结论不对,估计是边界条件给错了。当然这个也不保证对,毕竟欧拉方程只给出必要条件,是不是充分条件还要另求……而且关于位移,速度,加速度的那个部分我还有点迷糊……

[修改于 2 年前 - 2018-06-23 13:13:36]

来自:高压与强磁 / 电磁炮
 
5
2018-6-26 17:49:56
1楼

看不懂(´・_・`),等大佬铺好路摸着大佬过河。

折叠评论
1
加载评论中,请稍候...
折叠评论
2020-6-17 23:57:47
2楼

楼主牛逼,数学基础真好

这么看来,在第一级就不需要放太多努力了,用细线把电感往高了放,后续的加速级则加粗线径把电感降低,是最合适的

折叠评论
加载评论中,请稍候...
折叠评论
2020-06-23 23:50:32
2020-6-23 23:50:32
3楼

磁阻式在理论上比较美好,但是最大的问题是涡电流。目前所用的发射物都是高电导率的铁之类的,涡电流不能忽略,尤其是后面几级,通电时间很短,此时涡电流引起的排斥力会有负面效应。


基于“速度快了通电时间非常短(几十us~ms)”原则上,爱好者的条件下能实现高速的只有多级感应式。从目前能够获取的一些资料来看,实现超高速的线圈炮均为感应式(国外),因为只有感应式是直面“涡电流效应”。

折叠评论
加载评论中,请稍候...
折叠评论
2020-06-24 12:04:35
三水合番(作者)
4楼

涡流不是啥大问题

磁阻炮即使有涡流,影响也不是特别显著。因为弹丸口径较小,电阻率也比铜铝这种高很多。所以弹丸时间常数很小,一般只有十几us级,就算速度到200m/s,也依然显著小于线圈电流脉冲的持续时间,所以涡流不会造成倍数级别的性能恶化。“你好,电磁炮”那本书上有考虑涡流和不考虑涡流的仿真对比,速度差距并不显著。

而且磁阻炮在原理上也不是必然产生涡流的。它产生电磁力,只需要弹丸两端有磁通量差,不需要弹丸上的磁场有波动。所以只要分级足够细密,就可以通过“减小磁场波动”的方式,来减小涡流。参考这篇帖子 https://www.kechuang.org/t/81534 在使用这种方案实现高速高效率的过程中,涡流的问题自然而然的就解决了,不是啥大问题

爱好者只有多级感应炮实现了高速,也不是因为它直面了涡流。只是因为感应炮的效率和加速度无关,可以靠堆储能的方式,大力出奇迹,用较少的级数达到高速,而不会让像磁阻炮那样让效率降到ppm级。

另外,涡流的问题和本文主题无关,有兴趣的话建议到这篇帖子下讨论 https://www.kechuang.org/t/81534


折叠评论
加载评论中,请稍候...
折叠评论

想参与大家的讨论?现在就 登录 或者 注册

三水合番
进士 专家 学者 机友 笔友
文章
39
回复
773
学术分
2
2014/04/30注册,2 小时前活动

从事基于天然神经网络的天线拓扑优化

插入资源
全部
图片
视频
音频
附件
全部
未使用
已使用
正在上传
空空如也~
上传中..{{f.progress}}%
处理中..
上传失败,点击重试
{{f.name}}
空空如也~
(视频){{r.oname}}
{{selectedResourcesId.indexOf(r.rid) + 1}}
插入表情
我的表情
共享表情
Emoji
上传
注意事项
最大尺寸100px,超过会被压缩。为保证效果,建议上传前自行处理。
建议上传自己DIY的表情,严禁上传侵权内容。
点击重试等待上传{{s.progress}}%处理中...已上传
空空如也~
草稿箱
加载中...
此处只插入正文,如果要使用草稿中的其余内容,请点击继续创作。
{{fromNow(d.toc)}}
{{getDraftInfo(d)}}
标题:{{d.t}}
内容:{{d.c}}
继续创作
删除插入插入
{{forum.displayName}}
{{forum.countThreads}}
篇文章,
{{forum.countPosts}}
条回复
{{forum.description || "暂无简介"}}
ID: {{user.uid}}
学术分隐藏
{{submitted?"":"投诉"}}
请选择违规类型:
{{reason.description}}
支持的图片格式:jpg, jpeg, png