用“充电传输线”型的“脉冲形成网络”产生“平顶电流脉冲”驱动轨道炮

这篇帖子不涉及实物,主要目的就是介绍标题里那几个奇奇怪怪的名词,给想做轨道炮的朋友提供一个可能有效的、而且业余圈子里没人做过的思路。
帖子的顺序大概是:平顶电流脉冲是什么->怎么实现平顶电流脉冲(用脉冲形成网络)->怎么实现脉冲形成网络(用充电传输线)->怎么实现充电传输线

“平顶电流脉冲”就是字面意思,指电流波形有一个平顶的脉冲,峰值较低但持续时间较长。与之相对的,传统的“电容+续流二极管”得到的电流波形,就是一个“尖脉冲”,峰值很高但是持续时间很短。

平顶脉冲.png

平顶电流脉冲的峰值较低,有利于减小烧蚀,降低机械应力。而且,在另一篇帖子中(https://www.kechuang.org/t/80745 ),我们指出过,只要总能量不变,不论电流的峰值和波形如何变化,轨道炮的效率都不变。所以平顶电流脉冲还不会降低轨道炮的加速性能,可以说是有百利而无一害。 


用来形成某种特定形状的波形的网络,叫“脉冲形成网络”。由于这种平顶脉冲有很多优点,所以很多相关的研究都集中在这个方面。
最直观的思路就是,使用多组普通模块。每个模块都自带储能电容、开关、限流电感和续流二极管,单独一个模块输出的是普通尖脉冲。通过按特定时序触发这些模块,让这些普通尖脉冲相互叠加,可以非常灵活的得到各种波形。在职业研究人员的轨道炮中,这种做法非常常见。

多开关脉冲形成网络.png

不过这种做法有点……贵。因为对时序有要求,所以基本只能使用半导体开关。因为每个模块都需要短时间承受近乎全部的电流,所以相应的开关和二极管功率容量还不能太小(当然因为导通时间短,所以功率容量可以稍小一些)。同时,在爱好者能承受的能量级别下,一堆小功率的元件,要比一个大功率的元件贵得多(功率容量越大的元件,每份功率的价格就越低)。总的来说就是各种贵,以至于对爱好者来说性价比很低。

另一种办法是,通过合理设计的无源器件网络(指电容和电感,出于效率要求一般不用电阻),自发的产生所需的波形。一般只需要使用一个开关,而且不需要精确的定时,可以用机械开关。比上面的方案便宜得多,也简单得多。
基于这种思路的最简单的一种网络,就是本篇帖子的主角:充电传输线。
传输线的概念,有点偏向于微波射频这些领域,有必要的话可以自行搜索了解。用一个高阻的充电电源,给传输线充上电,就得到了一根充电传输线,维基百科上有比较详尽的描述
https://en.wikipedia.org/wiki/Pulse-forming_network#Transmission-line_PFNs

这里做一个简单的翻译:
一个简单的“充电传输线型脉冲形成网络”如下图。它的结构就是一根长度为D的传输线(比如同轴线),左边接一个充电电源,其阻抗Rs远高于传输线的特征阻抗Z0,右边接一个开关和一个匹配负载RL(RL=Z0)。 

330px-Charge_line_animation.gif

使用时,先用充电电源给传输线充电至电压V,然后闭合开关。由于负载阻抗和传输线匹配,所以负载上的电压为V/2。同时传输线上的电荷开始向负载释放,形成一个向左传播的,幅度为V/2的电压阶梯。当它传播至最左端时,会被反射回来,产生向右传播的反射波。由于Rs≫Z0近似于开路,所以反射波的幅度也为V/2,且与入射波同向。反射波经过的地方,电压归零,当反射波传播至负载处时,整根传输线电压归零,放电完毕。
整个放电过程中,负载上的电压为一个幅度为V/2,持续时间为2D/c的理想方波脉冲,其中c为传输线中“光速”。在实际的系统中,由于传输线的损耗和色散,电压阶梯在传播过程中,会逐渐变平缓,造成方波的边沿,特别是下降沿变缓,减弱“平顶”的效果。后面的仿真里,可以比较明显的看到这个问题。  

对于轨道炮来说,一般的传输线比如同轴线的储能显然是不够的。此时可以使用集总元件,比如电容和电感,来模拟传输线,如下图。

集总元件模拟传输线.png

其中C1~C5为储能电容,被充电至450V;L1~L4是额外添加的电感,L5为轨道炮本身的电感;R1为轨道炮的电阻。
这种模拟传输线的特征阻抗计算公式为 

$$ Z_{0}= \sqrt{ \frac{L}{C} } $$

L和C是每一小节的电感和电容,比如上图中,L=0.5uH,C=10mF,所以计算得到,这个模拟传输线的特征阻抗Z0=7.07mΩ。当R1= Z0=7.07mΩ时,仿真得到的电压和电流波形如下

无耗模拟传输线的仿真波形.png

可以看到,轨道炮得到了一个幅度30kA左右,持续时间700us左右的平顶电流脉冲。同时在脉冲结束后,电容也放电到了接近0V。由于这里用有限数量的集总元件来模拟连续的传输线,会引入误差,所以这里的电流波形并不是一个理想的方形。不过至少比普通的尖脉冲要美观得多,如下图(这里是过阻尼RLC电路,所以图中加不加二极管对结果没有影响)

理想电容,不使用PFN.png

当负载电阻R1小于特征阻抗时,一个脉冲不足以消耗完所有的能量。所以在第一个平顶脉冲后,会出现一个反向的脉冲。下图是R1=3.5 mΩ的结果。

负载电阻较小.png

 
当R1大于负载电阻时,在第一个平顶脉冲后,会出现一个幅度更小,但方向相同的脉冲。如下图是R1=14 mΩ的结果。

负载电阻较大.png

 
注意到,上面的仿真中,使用的是理想电容。如果是普通的电解电容,10mF时的内阻大约会是5mΩ。考虑内阻后的仿真结果如下

考虑ESR时的PFN输出电流.png

可以看到,原本的高频波动被ESR所吸收,使得波形变得异常平滑。不过由于损耗增加,所以脉冲持续时间缩短,同时下降沿变缓。

上面的仿真中,没有考虑到轨道炮的弹丸移动。由于弹丸移动会导致电感和电阻升高,使电流下降。为了补偿这个因素,不考虑弹丸时,理想的电流波形应该是略有上升的平顶。这种波形可以通过减小远离负载端的传输线的特征阻抗,比如减小电感来实现,如下图

略微上升的平顶脉冲.png

 
实际制作时,重点在于那几个电感(也没有别的东西了……)。上面仿真里的0.5uH电感是一个颇为尴尬的取值,大概就是刚好不适合用长直导线实现的电感量,需要用“线圈”的形式来实现。可以用金属板材,比如铝板切割成单层线圈,再分层组装起来。

金属板制作线圈.jpg

 
当然0.5uH不需要这么多匝数,大概只需要三四匝这种级别。具体需要的匝数可以用商用软件比如Maxwell算,或者用那个常见的模拟器来推算,如下。

仿真线圈参数.png

在几何外形不变的情况下,线圈的电感和电阻,都与匝数的平方成正比。所以对于上面图里这样形状的线圈,可以算出来0.5uH的时候,需要“276匝*sqrt(0.5uH/1828uH)=4.56匝”,此时的电阻为0.33mΩ,可以忽略。不过可能受趋肤效应的影响非常显著,可能需要进一步的仿真来得到更精确的结果。 

[修改于 9 个月前 - 2019-02-12 21:13:42]

+6  科创币    BSP   2019-02-12   三水有一个自己的团队吧,感觉一个人就撑起了整个KC电炮的理论基础。
来自 高电压技术电磁炮
 
5
2019-2-12 19:13:29
1楼

“TDR”和“集总元件模拟传输线”还可以做炮,太可怕了

集总元件模拟传输线的代价是带宽和“细分”程度挂钩,通常高带宽需求会导致集总元件太多、值太小,相比之下用作高能量的矩形脉冲产生倒是个不错的应用场景(当然类似的问题仍然存在,同样的持续时间下,需要更快的边沿来保证波形相对“平顶”)。真是意料之外用途,没仔细思考过,希望有更深入的讨论或者实践。

折叠评论
加载评论中,请稍候...
折叠评论
三水合番(作者)
2楼
引用:ddomax 发表于1 楼的内容:
“TDR”和“集总元件模拟传输线”还可以做炮,太可怕了集总元件模拟传输线的代价是带宽和“细分”程度挂.....

万物皆可做炮

折叠评论
加载评论中,请稍候...
折叠评论
3楼

不错。撸主对于传输线已经玩到了比较高级的阶段。

以前有个猜想:用铝箔卷起来的电解电容,本身就是一个阻抗极低的传输线。是否可以利用这个特性来做点文章?

折叠评论
加载评论中,请稍候...
折叠评论
4楼

还想过一种玩法:

一个阻抗渐变的传输线,比如左边阻抗低,右边阻抗渐高。

可以干啥呢?可以作为变压器。

把一个低压脉冲从左侧注入。随着脉冲往右传播,可以一边走一边升压。到了右边,就变成了高压脉冲了。

特别像一个鞭子。鞭子也类似,可以放大机械波阻抗,在末梢可以产生超声速。

那么把很多这样的变压器的右端并联起来,右端点就可以迸发出很大的瞬时功率,而且是高压的。

左边呢,只要用常见易得的低压储能和低压开关就可以work了。只需要把这些开关同步起来。

折叠评论
加载评论中,请稍候...
折叠评论
5楼
引用:量子隧道 发表于4 楼的内容:
还想过一种玩法:一个阻抗渐变的传输线,比如左边阻抗低,右边阻抗渐高。可以干啥呢?可以作为变压器。把一.....

鞭子这个比喻好,了解一下非线性传输线,这个能产生极高的频率(极窄的脉冲)。

折叠评论
加载评论中,请稍候...
折叠评论
2019-02-13 01:05:19
6楼
引用:量子隧道 发表于4 楼的内容:
还想过一种玩法:一个阻抗渐变的传输线,比如左边阻抗低,右边阻抗渐高。可以干啥呢?可以作为变压器。把一.....

感觉脉冲功率技术里的传输线玩法都挺 神奇的。。

a.png

 

b.png

[修改于 9 个月前 - 2019-02-13 01:07:30]

折叠评论
加载评论中,请稍候...
折叠评论
7楼
引用:虎哥 发表于5 楼的内容:
鞭子这个比喻好,了解一下非线性传输线,这个能产生极高的频率(极窄的脉冲)。

意思是用非线性压缩脉冲?这个有趣。

和孤子波传输现象的背后应该有类似的基础原理支撑。

折叠评论
加载评论中,请稍候...
折叠评论
8楼

在《电炮原理》中稍有提到,当初看的时候就觉得这几个电感特难搞……

IMG_20190213_152142.jpg

 

折叠评论
加载评论中,请稍候...
折叠评论
三水合番(作者)
9楼
引用:Mr_ 发表于8 楼的内容:
在《电炮原理》中稍有提到,当初看的时候就觉得这几个电感特难搞…… 

之前看到这种电路的时候,第一感觉是那几个电感的感量不好算。直到前两天看到“充电传输线”那个概念,才发现原来只需要感量相等,就能产生平顶脉冲。

这几个电感的重点,应该在机械强度,搞不好可能会变形。不过看前段时间炸易拉罐的那个帖子(https://www.kechuang.org/t/83456 )貌似机械强度的问题也不是太大。

[修改于 9 个月前 - 2019-02-13 19:14:20]

折叠评论
加载评论中,请稍候...
折叠评论

想参与大家的讨论?现在就 登录 或者 注册

插入资源
全部
图片
视频
音频
附件
全部
未使用
已使用
正在上传
空空如也~
上传中..{{f.progress}}%
处理中..
上传失败,点击重试
{{f.name}}
空空如也~
(视频){{r.oname}}
{{selectedResourcesId.indexOf(r.rid) + 1}}
ID:{{user.uid}}
{{user.username}}
{{user.info.certsName}}
{{user.description}}
{{format("YYYY/MM/DD", user.toc)}}注册,{{fromNow(user.tlv)}}活动
{{submitted?"":"投诉"}}
请选择违规类型:
{{reason.description}}
支持的图片格式:jpg, jpeg, png